Preprint
Article

This version is not peer-reviewed.

Cohomology of Modified Rota-Baxter Pre-lie Algebras and Its Applications

Fuyang Zhu,Taijie You  *,Wen Teng  *

Submitted:

22 April 2024

Posted:

23 April 2024

You are already at the latest version

Abstract
Semenov-Tian-Shansky has introduced the modified classical Yang-Baxter equation, which is called the modified $r$-matrix. Relevant studies have been extensive in recent times. This paper is devoted to study cohomology theory of modified Rota-Baxter pre-Lie algebras and its applications. First we introduce the concept and representations of modified Rota-Baxter pre-Lie algebras. We then develop the cohomology of modified Rota-Baxter pre-Lie algebras with coefficients in a suitable representation. As applications, we consider the infinitesimal deformations, abelian extensions and skeletal modified Rota-Baxter pre-Lie 2-algebra in terms of lower degree cohomology groups.
Keywords: 
;  ;  ;  ;  ;  

1. Introduction

Cayley [1] first introduced pre-Lie algebras (also called left-symmetric algebra) in the context of rooted tree algebras. Independently, Gerstenhaber [2] also introduced pre-Lie algebras in the deformation theory of rings and algebras. Pre-Lie algebras arose from the study of affine manifolds, affine structures on Lie groups and convex homogeneous cones [3], and then appeared in in geometry and physics, such as integrable systems, classical and quantum Yang-Baxter equations [4,5], quantum field theory, Poisson brackets, operands, complex and symplectic structures on Lie groups and Lie algebras [6]. See also in [7,8,9,10,11,12,13,14,15] for some interesting related about pre-Lie algebras.
Rota-Baxter operators on associative algebras were first introduced by Baxter [16] in his study of probability fluctuation theory, it was further developed by Rota [17]. Rota-Baxter operator has been widely used in many fields of mathematics and physics, including combinatorics, number theory, operads and quantum field theory [18]. The cohomology and deformation theory of Rota-Baxter operators of weight zero have been studied on various algebraic structures, see [19,20,21,22,23]. Recently, Wang and Zhou [24], Das [25] studied Rota-Baxter associative algebras of any weight by different methods respectively. Inspired by Wang and Zhou’s work, Das [26] considered the cohomology and deformations of weighted Rota-Baxter Lie algebras. The authors [27,28] developed the cohomology, extensions and deformations of Rota-Baxter 3-Lie algebras with any weight. In [29], Chen, Lou and Sun studied the cohomology and extensions of Rota-Baxter Lie triple systems. In [30], Guo and his collaborators explored the cohomology, deformations and extensions of Rota-Baxter pre-Lie algebras of arbitrary weights.
The term modified Rota-Baxter operator stemmed from the notion of the modified classical Yang-Baxter equation, which was also introduced in the work of Semenov-Tian-Shansky [31] as a modification of the operator form of the classical Yang-Baxter equation. Due to the importance of Rota-Baxter algebras and modified Rota-Baxter algebras, Zheng, Guo and Qiu [32] studied properties of extended Rota-Baxter operators. Recently, Jiang and Sheng have been established cohomology and deformation theory of modified r-matrices in [33]. Inspired by [33], modified Rota-Baxter algebraic structures have been widely studied in [34,35,36].
However, there was very few study about the modified Rota-Baxter pre-Lie algebras. The purpose of the paper is to study the cohomology of a modified Rota-Baxter pre-Lie algebra and its applications. In precisely, we introduce the concept of a modified Rota-Baxter pre-Lie algebra, which includes a pre-Lie algebra and a modified Rota-Baxter operator. And then, we propose a representation of a modified Rota-Baxter pre-Lie algebra. We define a cochain map Υ , and then the cohomology of modified Rota-Baxter pre-Lie algebras with coefficients in a representation is constructed. Finally, as applications of our propose cohomology theory, we consider the infinitesimal deformations and abelian extensions of a modified Rota-Baxter pre-Lie algebra in terms of second cohomology groups. In addition, we prove that any skeletal modified Rota-Baxter pre-Lie 2-algebra can be classified by the third cohomology group.
The paper is organized as follows. In Section 2, we introduce the concept of modified Rota-Baxter pre-Lie algebras, and give its representations. In Section 3, we establish the cohomology theory of modified Rota-Baxter pre-Lie algebras with coefficients in a representation, and apply it to the study of infinitesimal deformation. In Section 4, we discuss an abelian extension of the modified Rota-Baxter pre-Lie algebras in terms of our second cohomology groups. Finally, in Section 5, we classify skeletal modified Rota-Baxter pre-Lie 2-algebra using the third cohomology group.
Throughout this paper, K denotes a field of characteristic zero. All the vector spaces and (multi)linear maps are taken over K .

2. Representations of Modified Rota-Baxter Pre-Lie Algebras

In this section, we introduce the concept of modified Rota-Baxter pre-Lie algebras motivated by the modified r-matrices in [33] and give some examples. Next we propose the representation of modified Rota-Baxter pre-Lie algebras. Finally, we establish a new modified Rota-Baxter pre-Lie algebra and give its representation.
First, let’s recall some definitions and results about pre-Lie algebra and its representations from [2].
Definition 2.1.
[2] A pre-Lie algebra is a pair ( P , • ) consisting of a vector space P and a binary operation • : P × P → P such that for a , b , c ∈ P , the associator
( a , b , c ) = ( a • b ) • c − a • ( b • c ) ,
is symmetric in a , b , i.e.
( a , b , c ) = ( b , a , c ) , or equivalently , ( a • b ) • c − a • ( b • c ) = ( b • a ) • c − b • ( a • c ) .
Given a pre-Lie algebra ( P , • ) , the commutator [ a , b ] c = a • b − b • a , defines a Lie algebra structure on P , which is called the sub-adjacent Lie algebra of ( P , • ) and we denote it by P c .
Definition 2.2.
(i) Let ( P , • ) be a pre-Lie algebra. A modified Rota-Baxter operator on P is a linear map M : P → P subject to
M a • M b = M ( M a • b + a • M b ) − a • b , ∀ a , b ∈ P .
Furthermore, the triple ( P , • , M ) is called modified Rota-Baxter pre-Lie algebra, simply denoted by ( P , M ) .
(ii) A homomorphism between two modified Rota-Baxter pre-Lie algebras ( P 1 , M 1 ) and ( P 2 , M 2 ) is a pre-Lie algebra homomorphism F : P 1 → P 2 such that F ∘ M 1 = M 2 ∘ F . Furthermore, F is called an isomorphism from ( P 1 , M 1 ) to ( P 2 , M 2 ) if F is nondegenerate.
Example 2.3.
An identity map id P : P → P is a modified Rota-Baxter operator.
Example 2.4.
Let ( P , • ) be a 2-dimensional pre-Lie algebra and { ϵ 1 , ϵ 2 } be a basis, whose nonzero products are given as follows:
ϵ 1 • ϵ 2 = ϵ 1 , ϵ 2 • ϵ 2 = ϵ 2 .
Then, for k ∈ K , the operator
M = 1 k 0 − 1
is a modified Rota-Baxter operator on P .
Example 2.5.
Let ( P , • ) be a pre-Lie algebra. If a linear map M : P → P is a modified Rota-Baxter operator, then − M is also a modified Rota-Baxter operator.
Definition 2.6.
[13] Let ( P , • ) be a pre-Lie algebra. A Rota-Baxter operator of weight -1 on P is a linear map R : P → P subject to
R a • R b = R ( R a • b + a • R b − a • b ) , ∀ a , b ∈ P .
And then, the triple ( P , • , R ) is called Rota-Baxter pre-Lie algebra of weight -1.
Proposition 2.7.
Let ( P , • ) be a pre-Lie algebra. If a linear map R : P → P is a Rota-Baxter operator of weight -1, then the map 2 R − id P is a modified Rota-Baxter operator on P .
Proof. 
For any a , b ∈ P , we have
( 2 R − id P ) a • ( 2 R − id P ) b = ( 2 R a − a ) • ( 2 R b − b ) = 4 R a • R b − 2 R a • b − 2 a • R b + a • b = 4 R ( R a • b + a • R b − a • b ) − 2 R a • b − 2 a • R b + a • b = ( 2 R − id P ) ( 2 R − id P ) a • b + a • ( 2 R − id P ) b − a • b .
The proposition follows. â–¡
Recall from [13] that a Nijenhuis operator on a pre-Lie algebra ( P , • ) is a linear map N : P → P satisfies
N a • N b = N ( N a • b + a • N b − N ( a • b ) ) ,
for all a , b ∈ P . The relationship between the modified Rota-Baxter operator and Nijenhuis operator is as follows, which proves to be obvious.
Proposition 2.8.
Let ( P , • ) be a pre-Lie algebra and N : P → P be a linear map. If N 2 = id , then N is a Nijenhuis operator if and only if N is a modified Rota-Baxter operator.
Definition 2.9.
[8] Let ( P , • ) be a pre-Lie algebra and V a vector space. A representation of P on V consists of a pair ( • l , • r ) , where • l : P × V → V and • r : V × P → V are two linear maps satisfying
a • l ( b • l u ) − ( a • b ) • l u = b • l ( a • l u ) − ( b • a ) • l u , a • l ( u • r b ) − ( a • l u ) • r b = u • r ( a • b ) − ( u • r a ) • r b , ∀ a , b ∈ P , u ∈ V .
Definition 2.10.
A representation of the modified Rota-Baxter pre-Lie algebra ( P , • , M ) is a quadruple ( V ; • l , • r , M V ) such that the following conditions are satisfied:
(i) ( V ; • l , • r ) is a representation of the pre-Lie algebra ( P , • ) ;
(ii) M V : V → V is a linear map satisfying the following equations
M a • l M V u = M V ( M a • l u + a • l M V u ) − a • l u ,
M V u • r M a = M V ( M V u • r a + u • r M a ) − u • r a ,
for a ∈ P and u ∈ V .
Example 2.11.
( P ; • l = • r = • , M ) is an adjoint representation of the modified Rota-Baxter pre-Lie algebra ( P , • , M ) .
Next we construct the semidirect product of the modified Rota-Baxter pre-Lie algebra.
Proposition 2.12.
If ( V ; • l , • r , M V ) is a representation of the modified Rota-Baxter pre-Lie algebra ( P , • , M ) , then P ⊕ V is a modified Rota-Baxter pre-Lie algebra with the following maps:
( a + u ) • ⋉ ( b + v ) : = a • b + a • l v + u • r b , M ⊕ M V ( a + u ) = M a + M V u ,
for a ∈ P and u ∈ V . In the case, the modified Rota-Baxter pre-Lie algebra P ⊕ V is called a semidirect product of P and V, denoted by P ⋉ V = ( P ⊕ V , • ⋉ , M ⊕ M V ) .
Proof. 
Firstly, it is easy to verify that ( P ⊕ V , • ⋉ ) is a pre-Lie algebra. In addition, for any a , b ∈ P and u , v ∈ V , by Equations (2.2)- (2.4) we have
M ⊕ M V ( a + u ) • ⋉ M ⊕ M V ( b + v ) = ( M a + M V u ) • ⋉ ( M b + M V v ) = M a • M b + M a • l M V v + M V u • r M b = M ( M a • b + a • M b ) − a • b + M V ( M a • l u + a • l M V u ) − a • l u + M V ( M V u • r b + u • r M b ) − u • r b = M ⊕ M V ( a + u ) • ⋉ M ⊕ M V ( b + v ) + M ⊕ M V ( a + u ) • ⋉ ( b + v ) − ( a + u ) • ⋉ ( b + v ) ,
which means that ( P ⊕ V , • ⋉ , M ⊕ M V ) is a modified Rota-Baxter pre-Lie algebra. □
Proposition 2.13.
Let ( P , • , M ) be a modified Rota-Baxter pre-Lie algebra, Define new operation as follows:
a • M b = M a • b + a • M b , ∀ a , b ∈ P .
Then, (i) ( P , • M ) is a pre-Lie algebra. We denote this pre-Lie algebra by P M .
(ii) ( P M , M ) is a modified Rota-Baxter pre-Lie algebra.
Proof. 
(i) For any a , b , c ∈ P , by Equations (2.1) and (2.2), we have
( a • M b ) • M c − a • M ( b • M c ) = M ( M a • b + a • M b ) • c + ( M a • b + a • M b ) • M c − M a • ( M b • c + b • M c ) − a • M ( M b • c + b • M c ) = M ( M b • a + b • M a ) • c + ( M b • a + b • M a ) • M c − M b • ( M a • c + a • M c ) − b • M ( M a • c + a • M c ) = ( b • M a ) • M c − b • M ( a • M c )
Thus, ( P , • M ) is a pre-Lie algebra.
(ii) For any a , b ∈ P , by Eq. (2.2), we have
M a • M M b = M 2 a • M b + M a • M 2 b = M ( M 2 a • b + M a • M b ) − M a • b + M ( M a • M b + a • M 2 b ) − a • M b = M ( M a • M b + M a • M b ) − a • M b .
Hence, ( P M , M ) is a modified Rota-Baxter pre-Lie algebra. â–¡
Proposition 2.14.
Let ( V ; • l , • r , M V ) be a representation of the modified Rota-Baxter pre-Lie algebra ( P , • , M ) , Define two bilinear maps • l M : P × V → V and • r M : V × P → V by
a • l M u : = M a • l u − M V ( a • l u ) ,
u • r M a : = u • r M a − M V ( u • r a ) , ∀ a ∈ P , u ∈ V .
Then ( V ; • l M , • r M ) is a representation of a pre-Lie algebra P M . Moreover, ( V ; • l M , • r M , M V ) is a representation of a modified Rota-Baxter pre-Lie algebra ( P M , M ) .
Proof. 
First, by direct verification, ( V ; • l M , • r M ) is a representation of the pre-Lie algebra P M . Further, for any a ∈ P and u ∈ V , by Eq. (2.3), we have
M a • l M M V u = M 2 a • l M V u − M V ( M a • l M V u ) = M V ( M 2 a • l u + M a • l M V u ) − M a • l u − M V 2 ( M a • l u + a • l M V u ) + M V ( a • l u ) = M V M 2 a • l u + M a • l M V u − M V ( M a • l u + a • l M V u ) − M a • l u − M V ( a • l u ) = M V ( M a • l M u + a • l M M V u ) − a • l M u .
Similarly, by Eq. (2.4), there is also M V u • r M M a = M V ( M V u • r M a + u • r M M a ) − u • r M a . Hence, ( V ; • l M , • r M , M V ) is a representation of ( P M , M ) . □
Example 2.15.
( P ; • l M = • r M = • M , M ) is an adjoint representation of the modified Rota-Baxter pre-Lie algebra ( P M , M ) , where
a • M b : = M a • b − M ( a • b ) ,
for any a , b ∈ P .

3. Cohomology of Modified Rota-Baxter Pre-Lie Algebras

In this section, we develop the cohomology of a modified Rota-Baxter pre-Lie algebra with coefficients in its representation.
Let us recall the cohomology theory of pre-Lie algebras in [14]. Let ( P , • ) be a pre-Lie algebra and ( V ; • l , • r ) be a representation of it. Denote the n − cochains of P with coefficients in representation V by
C PLie n ( P , V ) : = Hom ( P ⊗ n , V ) .
The coboundary operator δ : C PLie n ( P , V ) → C PLie n + 1 ( P , V ) , for a 1 , ⋯ , a n + 1 ∈ P and g ∈ C PLie n ( P , V ) , as
δ g ( a 1 , … , a n + 1 ) = ∑ i = 1 n ( − 1 ) i + 1 a i • l g ( a 1 , … , a ^ i , ⋯ , a n + 1 ) + ∑ i = 1 n ( − 1 ) i + 1 g ( a 1 , … , a ^ i , … , a n , a i ) • r a n + 1 − ∑ i = 1 n ( − 1 ) i + 1 g ( a 1 , … , a ^ i , … , a n , a i • a n + 1 ) + ∑ 1 ≤ i < j ≤ n ( − 1 ) i + j g ( [ a i , a j ] c , a 1 , … , a ^ i , … , a ^ j , … , a n + 1 ) .
Then, it has been proved in [14] that δ 2 = 0 . Let us denote by H PLie * ( P , V ) , the cohomology group associated to the cochain complex ( C PLie * ( P , V ) , δ ) .
We first study the cohomology of the modified Rota-Baxter operator.
Let ( P , • , M ) be a modified Rota-Baxter pre-Lie algebra and ( V ; • l , • r , M V ) be a representation of it, Recall that Proposition 2.13 and Proposition 2.14 give a new pre-Lie algebra P M and a new representation V M = ( V ; • l M , • r M ) over P M . Consider the cochain complex of P M with coefficients in V M :
( C PLie * ( P M , V M ) , δ M ) = ( ⊕ n = 1 ∞ C PLie n ( P M , V M ) , δ M ) .
More precisely, C PLie n ( P M , V M ) : = Hom ( P M ⊗ n , V M ) and its coboundary map δ M : C PLie n ( P M , V M ) → C PLie n ( P M , V M ) , for a 1 , ⋯ , a n + 1 ∈ P R and f ∈ C PLie n ( P M , V M ) , is given as follows:
δ M f ( a 1 , … , a n + 1 ) = ∑ i = 1 n ( − 1 ) i + 1 M a i • l f ( a 1 , … , a ^ i , ⋯ , a n + 1 ) − M V a i • l f ( a 1 , … , a ^ i , ⋯ , a n + 1 ) + ∑ i = 1 n ( − 1 ) i + 1 f ( a 1 , … , a ^ i , … , a n , a i ) • r M a n + 1 − M V f ( a 1 , … , a ^ i , … , a n , a i ) • r a n + 1 − ∑ i = 1 n ( − 1 ) i + 1 f ( a 1 , … , a ^ i , … , a n , M a i • a n + 1 + a i • M a n + 1 ) + ∑ 1 ≤ i < j ≤ n ( − 1 ) i + j f ( M a i • a j + a i • M a j − M a j • a i − a j • M a i , a 1 , … , a ^ i , … , a ^ j , … , a n + 1 ) .
Definition 3.1.
Let ( P , • , M ) be a modified Rota-Baxter pre-Lie algebra and ( V ; • l , • r , M V ) be a representation of it. Then the cochain complex ( C PLie * ( P M , V M ) , δ M ) is called the cochain complex of modified Rota-Baxter operator M with coefficients in V M , denoted by ( C MRBO * ( P , V ) , δ M ) . The cohomology of ( C MRBO * ( P , V ) , δ M ) , denoted by H MRBO * ( P , V ) , is called the cohomology of modified Rota-Baxter operator M with coefficients in V M .
In particular, when ( P ; • l M = • r M = • M , M ) is the adjoint representation of ( P M , M ) , we denote ( C MRBO * ( P , P ) , δ M ) by ( C MRBO * ( P ) , δ M ) and call it the cochain complex of modified Rota-Baxter operator M, and denote H MRBO * ( P , P ) by H MRBO * ( P ) and call it the cohomology of modified Rota-Baxter operator M.
Next, we will combine the cohomology of pre-Lie algebras and the cohomology of modified Rota-Baxter operators to construct a cohomology theory for modified Rota-Baxter pre-Lie algebras.
Let’s construct the following cochain map. For any n ≥ 1 , we define a linear map Υ : C PLie n ( P , V ) → C MRBO n ( P , V ) by
( Υ f ) ( a 1 , … , a n ) = ∑ i = 1 ⌊ n 2 ⌋ + 1 ( ∑ 1 ⩽ j 1 < ⋯ < j 2 i − 2 ⩽ n f ( a 1 , … , M a j 1 , … , M a j 2 i − 2 , … , a n )
− ∑ 1 ⩽ j 1 < ⋯ < j 2 i − 3 ⩽ n M V f ( a 1 , … , M a j 1 , … , M a j 2 i − 3 , … , a n ) ) , if n is an even , ( Υ f ) ( a 1 , … , a n ) = ∑ i = 1 ⌊ n 2 ⌋ + 1 ( ∑ 1 ⩽ j 1 < ⋯ < j 2 i − 1 ⩽ n f ( a 1 , … , M a j 1 , … , M a j 2 i − 1 , … , a n )
− ∑ 1 ⩽ j 1 < ⋯ < j 2 i − 2 ⩽ n M V f ( a 1 , … , M a j 1 , … , M a j 2 i − 2 , … , a n ) ) , if n is an odd ,
among them, when the subscript of j 2 i − 3 is negative, f is a zero map. For example, when n = 1 , by Eq. (3.4), the map Υ : C PLie 1 ( P , V ) → C MRBO 1 ( P , V ) is as follows:
( Υ f ) ( a 1 ) = f ( M a 1 ) − M V f ( a 1 ) .
Lemma 3.2.
The map Υ is a cochain map, i.e., Υ ∘ δ = δ M ∘ Υ . In other words, the following diagram is commutative:Preprints 104517 i001
Proof. 
It can be proved by using similar arguments to Appendix A in [28]. Because of space limitations, here we only prove the case of n = 1 . For any f ∈ C PLie 1 ( P , V ) and a , b ∈ P , by Equations(2.2)-(2.7), (3.1)-(3.3) and (3.5), we have
Υ ( δ f ) ( a , b ) = ( δ f ) ( M a , M b ) − M V ( δ f ) ( M a , b ) + ( δ f ) ( a , M b ) + ( δ f ) ( a , b ) = M a • l f ( M b ) + f ( M a ) • r M b − f ( M a • M b ) − M V ( M a • l f ( b ) + f ( M a ) • r b − f ( M a • b ) + a • l f ( M b ) + f ( a ) • r M b − f ( a • M b ) ) + a • l f ( b ) + f ( a ) • r b − f ( a • b )
and
δ M ( Υ f ) ( a , b ) = M a • l ( f ( M b ) − M V f ( b ) ) − M V ( a • l ( f ( M b ) − M V f ( b ) ) ) + ( f ( M a ) − M V f ( a ) ) • r M b − M V ( ( f ( M a ) − M V f ( a ) ) • r b ) − f ( M a • M b + a • b ) + M V f ( M a • b + a • M b )
Further comparing Equations (3.6) and (3.7), we have (3.6)=(3.7). Therefore, Υ ∘ δ = δ M ∘ Υ . □
Definition 3.3.
Let ( P , • , M ) be a modified Rota-Baxter pre-Lie algebra and ( V ; • l , • r , M V ) be a representation of it. We define the cochain complex ( C MRBPLie * ( P , V ) , ∂ ) of modified Rota-Baxter pre-Lie algebra ( P , • , M ) with coefficients in ( V ; • l , • r , M V ) to the negative shift of the mapping cone of Υ , that is, let
C MRBPLie 1 ( P , V ) = C PLie 1 ( P , V ) and C MRBPLie n ( g , V ) : = C PLie n ( P , V ) ⊕ C MRBO n − 1 ( P , V ) , ∀ n ≥ 2 ,
and the coboundary map ∂ : C MRBPLie 1 ( P , V ) → C MRBPLie 2 ( P , V ) is given by
∂ ( f ) = ( δ f , − Υ f ) , ∀ f ∈ C MRBPLie 1 ( P , V ) ;
for n ≥ 2 , the coboundary map ∂ : C MRBPLie n ( P , V ) → C MRBPLie n + 1 ( P , V ) is given by
∂ ( f , g ) = ( δ f , − δ M g − Υ f ) , ∀ ( f , g ) ∈ C MRBPLie n ( P , V ) .
The cohomology of ( C MRBPLie * ( P , V ) , ∂ ) , denoted by H MRBPLie * ( P , V ) , is called the cohomology of the modified Rota-Baxter pre-Lie algebra ( P , • , M ) with coefficients in ( V ; • l , • r , M V ) . In particular, when ( V ; • l , • r , M V ) = ( P ; • l = • r = • , M ) , we just denote ( C MRBPLie * ( P , P ) , ∂ ) , H MRBPLie * ( P , P ) by ( C MRBPLie * ( P ) , ∂ ) , H MRBPLie * ( P ) respectively, and call them the cochain complex, the cohomology of modified Rota-Baxter pre-Lie algebra ( P , • , M ) respectively.
It is obvious that there is a short exact sequence of cochain complexes:
0 → C MRBO * − 1 ( P , V ) ⟶ C MRBPLie * ( P , V ) ⟶ C PLie * ( P , V ) → 0 .
It induces a long exact sequence of cohomology groups:
⋯ → H MRBPLie n ( P , V ) → H PLie n ( P , V ) → H MRBO n ( P , V ) → H MRBPLie n + 1 ( P , V ) → H PLie n + 1 ( P , V ) → ⋯ .
At the end of this section, we use the established cohomology theory to characterize infinitesimal deformations of modified Rota-Baxter pre-Lie algebras.
Definition 3.4.
A infinitesimal deformation of the modified Rota-Baxter pre-Lie algebra ( P , • , M ) is a pair ( • t , M t ) of the forms
• t = • + • 1 t , M t = M + M 1 t ,
such that the following conditions are satisfied:
(i) ( • 1 , M 1 ) ∈ C MRBPLie 2 ( P ) ,
(ii) and ( P [ [ t ] ] , • t , M t ) is a modified Rota-Baxter pre-Lie algebra over K [ [ t ] ] .
Proposition 3.5.
Let ( P [ [ t ] ] , • t , M t ) be a infinitesimal deformation of modified Rota-Baxter pre-Lie algebra ( P , • , M ) . Then ( • 1 , M 1 ) is a 2-cocycle in the cochain complex ( C MRBPLie * ( P ) , ∂ ) .
Proof. 
Suppose ( P [ [ t ] ] , • t , M t ) is a modified Rota-Baxter pre-Lie algebra. Then for any a , b , c ∈ P , we have
( a • t b ) • t c − a • t ( b • t c ) = ( b • t a ) • t c − b • t ( a • t c ) , M t a • t M t b = M t ( M t a • t b + a • t M t b ) − a • t b .
Comparing coefficients of t 1 on both sides of the above equations, we have
( a • 1 b ) • c + ( a • b ) • 1 c − a • ( b • 1 c ) − a • 1 ( b • c ) = ( b • 1 a ) • c + ( b • a ) • 1 c − b • 1 ( a • c ) − b • ( a • 1 c ) , M 1 a • M b + M a • M 1 b + M a • 1 M b = M ( M 1 a • b + M a • 1 b + a • M 1 b + a • 1 M b ) + M 1 ( M a • b + a • M b ) − a • 1 b .
Therefore, ∂ ( • 1 , M 1 ) = ( δ • 1 , − δ M M 1 − Υ • 1 ) = 0 , that is, ( • 1 , M 1 ) is a 2-cocycle. □
Definition 3.6.
The 2-cocycle ( • 1 , M 1 ) is called the infinitesimal of the infinitesimal deformation ( P [ [ t ] ] , • t , M t ) of modified Rota-Baxter pre-Lie algebra ( P , • , M ) .
Definition 3.7.
Let ( P [ [ t ] ] , • t , M t ) and ( P [ [ t ] ] , • t ′ , M t ′ ) be two infinitesimal deformations of modified Rota-Baxter pre-Lie algebra ( P , • , M ) . An isomorphism from ( P [ [ t ] ] , • t ′ , M t ′ ) to ( P [ [ t ] ] , • t , M t ) is a linear map φ t = id + t φ 1 , where φ 1 : P → P is linear map, such that:
φ t ∘ • t ′ = • t ∘ ( φ t ⊗ φ t ) ,
φ t ∘ M t ′ = M t ∘ φ t .
In this case, we say that the two infinitesimal deformations ( P [ [ t ] ] , • t , M t ) and ( P [ [ t ] ] , • t ′ , M t ′ ) are equivalent.
Proposition 3.8.
The infinitesimals of two equivalent infinitesimal deformations of ( P , • , M ) are in the same cohomology class in H MRBPLie 2 ( P ) .
Proof. 
Let φ t : ( P [ [ t ] ] , • t ′ , M t ′ ) → ( P [ [ t ] ] , • t , M t ) be an isomorphism. By expanding Equations (3.8) and (3.9) and comparing the coefficients of t 1 on both sides, we have
• 1 ′ − • 1 = φ 1 • id + id • φ 1 − φ 1 ∘ • = δ φ 1 , M 1 ′ − M 1 = M ∘ φ 1 − φ 1 ∘ M = − Υ φ 1 ,
that is, we have
( • 1 ′ , M 1 ′ ) − ( • 1 , M 1 ) = ( δ φ 1 , − Υ φ 1 ) = ∂ ( φ 1 ) ∈ B MRBPLie 2 ( P ) .
Therefore, ( • 1 ′ , M 1 ′ ) and ( • 1 , M 1 ) are cohomologous and belongs to the same cohomology class in H MRBPLie 2 ( P ) . □

4. Abelian Extensions of Modified Rota-Baxter Pre-Lie Algebras

In this section, we prove that any abelian extension of a modified Rota-Baxter pre-Lie algebra has a representation and a 2-cocycle. It is further proved that they are classified by the second cohomology, as one would expect of a good cohomology theory.
Definition 4.1.
Let ( P , • , M ) be a modified Rota-Baxter pre-Lie algebra and ( V , • V , M V ) an abelian modified Rota-Baxter pre-Lie algebra with the trivial product • V . An abelian extension ( P ^ , • ^ , M ^ ) of ( P , • , M ) by ( V , • V , M V ) is a short exact sequence of morphisms of modified Rota-Baxter pre-Lie algebras
0 → ( V , • V , M V ) → i ( P ^ , • ^ , M ^ ) → p ( P , • , M ) → 0
such that M ^ u = M V u and u • ^ v = 0 , for u , v ∈ V , i.e., V is an abelian ideal of P ^ .
Definition 4.2.
A section of an abelian extension ( P ^ , • ^ , M ^ ) of ( P , • , M ) by ( V , • V , M V ) is a linear map s : P → P ^ such that p ∘ s = id P .
Definition 4.3.
Let ( P ^ 1 , • ^ 1 , M ^ 1 ) and ( P ^ 2 , • ^ 2 , M ^ 2 ) be two abelian extensions of ( P , • , M ) by ( V , • V , M V ) . They are said to be equivalent if there is an isomorphism of modified Rota-Baxter pre-Lie algebras F : ( P ^ 1 , • ^ 1 , M ^ 1 ) → ( P ^ 2 , • ^ 2 , M ^ 2 ) such that the following diagram is commutative:
0 → ( V , • V , M V ) → i 1 ( P ^ 1 , • ^ 1 , M ^ 1 ) → p 1 ( P , • , M ) → 0 ∥ F ↓ F ∥ 0 → ( V , • V , M V ) → i 2 ( P ^ 2 , • ^ 2 , M ^ 2 ) → p 2 ( P , • , M ) → 0 .
Now for an abelian extension ( P ^ , • ^ , M ^ ) of ( P , • , M ) by ( V , • V , M V ) with a section s : P → P ^ , we define two bilinear maps • l : P × V → V , • r : V × P → V by
a • l u = s ( a ) • ^ u , u • r a = u • ^ s ( a ) , ∀ a ∈ P , u ∈ V .
Proposition 4.4.
With the above notations, ( V ; • l , • r , M V ) is a representation of the modified Rota-Baxter pre-Lie algebra ( P , • , M ) and does not depend on the choice of s .
Proof. 
First, for any other section s ′ : P → P ^ , for any a ∈ P , we have
p ( s ( a ) − s ′ ( a ) ) = p ( s ( a ) ) − p ( s ′ ( a ) ) = a − a = 0 .
Thus, there exists an element u ∈ V , such that s ′ ( a ) = s ( a ) + u . Note that V is an abelian ideal of P ^ , this yields that
s ′ ( x ) • ^ u = ( s ( x ) + v ) • ^ u = s ( x ) • ^ u , u • ^ s ′ ( x ) = u • ^ ( s ( x ) + v ) = u • ^ s ( x ) .
This means that • l , • r does not depend on the choice of s .
Next, for any a , b ∈ P and u ∈ V , by V is an abelian ideal of P ^ and s ( a ) • ^ s ( b ) − s ( a • b ) ∈ V , we have
a • l ( b • l u ) − ( a • b ) • l u = s ( a ) • ^ ( s ( b ) • ^ u ) − s ( a • b ) • ^ u = s ( a ) • ^ ( s ( b ) • ^ u ) − ( s ( a ) • ^ s ( b ) ) • ^ u = s ( b ) • ^ ( s ( a ) • ^ u ) − ( s ( b ) • ^ s ( a ) ) • ^ u = b • l ( a • l u ) − ( b • a ) • l u .
By the same token, there is also a • l ( u • r b ) − ( a • l u ) • r b = u • r ( a • b ) − ( u • r a ) • r b . This shows that ( V ; • l , • r ) is a representation of the pre-Lie algebra ( P , • )
On the other hand, by M ^ s ( a ) − s ( M a ) ∈ V , we have
M a • l M V u = s ( M a ) • ^ M V u = M ^ s ( a ) • ^ M V u = M ^ s ( a ) • ^ M ^ u = M ^ ( M ^ s ( a ) • ^ u + s ( a ) • ^ M ^ u ) − s ( a ) • ^ u = M V ( s ( M a ) • ^ u + s ( a ) • ^ M V u ) − s ( a ) • ^ u = M V ( M a • l u + a • l M V u ) − a • l u .
In the same way, there is also M V u • r M a = M V ( M V u • r a + u • r M a ) − u • r a . Hence, ( V ; • l , • r , M V ) is a representation of ( P , • , M ) . □
Let ( P ^ , • ^ , M ^ ) be an abelian extension of ( P , • , M ) by ( V , • V , M V ) and s : P → P ^ be a section of it. Define the following maps ω : P × P → V and χ : P → V respectively by
ω ( a , b ) = s ( a ) • ^ s ( b ) − s ( a • b ) , χ ( a ) = M ^ s ( a ) − s ( M a ) , ∀ a , b ∈ P .
We transfer the modified Rota-Baxter pre-Lie algebra structure on P ^ to P ⊕ V by endowing P ⊕ V with a multiplication • ω , and a modified Rota-Baxter operator M χ defined by
( a + u ) • ω ( b + v ) = a • b + a • l v + u • r b + ω ( a , b ) ,
M χ ( a + u ) = M a + χ ( a ) + M V u , ∀ a , b ∈ P , u , v ∈ V .
Proposition 4.5.
The triple ( P ⊕ V , • ω , M χ ) is a modified Rota-Baxter pre-Lie algebra if and only if ( ω , χ ) is a 2-cocycle of the modified Rota-Baxter pre-Lie algebra ( P , • , M ) with the coefficient in ( V , • V , M V ) . In this case,
0 → ( V , • V , M V ) → i ( P ⊕ V , • ω , M χ ) → p ( P , • , M ) → 0
is an abelian extension.
Proof. 
The triple ( P ⊕ V , • ω , M χ ) is a modified Rota-Baxter pre-Lie algebra if and only if for any a , b , c ∈ P and u , v , w ∈ V , the following equations hold:
( ( a + u ) • ω ( b + v ) ) • ω ( c + w ) − ( a + u ) • ω ( ( b + v ) • ω ( c + w ) )
= ( ( b + v ) • ω ( a + u ) ) • ω ( c + w ) − ( b + v ) • ω ( ( a + u ) • ω ( c + w ) ) , M χ ( a + u ) • ω M χ ( b + v )
= M χ ( M χ ( a + u ) • ω ( b + v ) + ( a + u ) • ω M χ ( b + v ) ) − ( a + u ) • ω ( b + v ) .
Further, Equations (4.4) and (4.5) are equivalent to the following equations:
ω ( a , b ) • r c + ω ( a • b , c ) − a • l ω ( b , c ) − ω ( a , b • c )
= ω ( b , a ) • r c + ω ( b • a , c ) − b • l ω ( a , c ) − ω ( b , a • c ) , M a • l χ ( b ) + χ ( a ) • r M b + ω ( M a , M b )
= χ ( M a • b + a • M b ) + M V χ ( a ) • r b + a • l χ ( b ) + ω ( M a , b ) + ω ( a , M b ) − ω ( a , b ) .
Using Equations (4.6) and (4.7), we have δ ω = 0 and − δ M χ − Υ ω = 0 , respectively. Therefore, ∂ ( ω , χ ) = ( δ ω , − δ M χ − Υ ω ) = 0 , that is, ( ω , χ ) is a 2-cocycle.
Conversely, if ( ω , χ ) is a 2-cocycle of ( P , • , M ) with the coefficient in ( V , • V , M V ) , then we have ∂ ( ω , χ ) = ( δ ω , − δ M χ − Υ ω ) = 0 , in which Equations (4.4) and (4.5) hold. Hence ( P ⊕ V , • ω , M χ ) is a modified Rota-Baxter pre-Lie algebra. □
Proposition 4.6.
Let ( P ^ , • ^ , M ^ ) be an abelian extension of ( P , • , M ) by ( V , • V , M V ) and s be a section of it. If the pair ( ω , χ ) is a 2-cocycle of ( P , • , M ) with the coefficient in ( V , • V , M V ) constructed using the section s , then its cohomology class does not depend on the choice of s .
Proof. 
Let s 1 , s 2 : P → P ^ be two distinct sections, by Proposition 4.5, we have two corresponding 2-cocycles ( ω 1 , χ 1 ) and ( ω 2 , χ 2 ) respectively. Define a linear map γ : P → V by γ ( a ) = s 1 ( a ) − s 2 ( a ) . Then
ω 1 ( a , b ) = s 1 ( a ) • ^ 1 s 1 ( b ) − s 1 ( a • b ) = ( s 2 ( a ) + γ ( a ) ) • ^ 1 ( s 2 ( b ) + γ ( b ) ) − ( s 2 ( a • b ) + γ ( a • b ) ) = s 2 ( a ) • ^ 2 s 2 ( b ) − s 2 ( a • b ) + s 2 ( a ) • ^ 2 γ ( b ) + γ ( a ) • ^ 2 s 2 ( b ) + γ ( a ) • ^ 2 γ ( b ) − γ ( a • b ) = s 2 ( a ) • ^ 2 s 2 ( b ) − s 2 ( a • b ) + a • l γ ( b ) + γ ( a ) • r b − γ ( a • b ) = ω 2 ( a , b ) + δ γ ( a • b ) , χ 1 ( a ) = M ^ s 1 ( a ) − s 1 ( M a ) = M ^ ( s 2 ( a ) + γ ( a ) ) − ( s 2 ( M a ) + γ ( M a ) ) = M ^ s 2 ( a ) − s 2 ( M a ) + M ^ γ ( a ) − γ ( M a ) = χ 2 ( a ) + M V γ ( a ) − γ ( M a ) = χ 2 ( a ) − Υ γ ( a ) .
Hence, ( ω 1 , χ 1 ) − ( ω 2 , χ 2 ) = ( δ γ , − Υ γ ) = ∂ ( γ ) ∈ B MRBPLie 2 ( P , V ) , that is ( ω 1 , χ 1 ) and ( ω 2 , χ 2 ) form the same cohomological class in H MRBPLie 2 ( P , V ) . □
Next we are ready to classify abelian extensions of a modified Rota-Baxter pre-Lie algebra.
Theorem 4.7.
Abelian extensions of a modified Rota-Baxter pre-Lie algebra ( P , • , M ) by ( V , • V , M V ) are classified by the second cohomology group H MRBPLie 2 ( P , V ) .
Proof. 
Assume that ( P ^ 1 , • ^ 1 , M ^ 1 ) and ( P ^ 2 , • ^ 2 , M ^ 2 ) are equivalent abelian extensions of ( P , • , M ) by ( V , • V , M V ) with the associated isomorphism F : ( P ^ 1 , • ^ 1 , M ^ 1 ) → ( P ^ 2 , • ^ 2 , M ^ 2 ) such that the diagram in (18) is commutative. Let s 1 be a section of ( P ^ 1 , • ^ 1 , M ^ 1 ) . As p 2 ∘ F = p 1 , we have
p 2 ∘ ( F ∘ s 1 ) = p 1 ∘ s 1 = id P .
That is, F ∘ s 1 is a section of ( P ^ 2 , • ^ 2 , M ^ 2 ) . Denote s 2 : = F ∘ s 1 . Since F is an isomorphism of modified Rota-Baxter pre-Lie algebras such that F | V = id V , we have
ω 2 ( a , b ) = s 2 ( a ) • ^ 2 s 2 ( b ) − s 2 ( a • b ) = F ∘ s 1 ( a ) • ^ 2 F ∘ s 1 ( b ) − F ∘ s 1 ( a • b ) = F s 1 ( a ) • ^ 1 s 1 ( b ) − s 1 ( a • b ) = F ( ω 1 ( a , b ) ) = ω 1 ( a , b )
and
χ 2 ( a ) = M ^ s 2 ( a ) − s 2 ( M a ) = M ^ ( F ∘ s 1 ( a ) ) − F ∘ s 1 ( M a ) = M ^ ( s 1 ( a ) ) − s 1 ( M ( a ) ) = χ 1 ( a ) .
So, two isomorphic abelian extensions give rise to the same element in H MRBPLie 2 ( P , V ) .
Conversely, given two 2-cocycles ( ω 1 , χ 1 ) and ( ω 2 , χ 2 ) , we can construct two abelian extensions ( P ⊕ V , • ω 1 , M χ 1 ) and ( P ⊕ V , • ω 2 , M χ 2 ) via Proposition 4.5. If they represent the same cohomology class in H MRBPLie 2 ( P , V ) , then there is a linear map ι : P → V such that
( ω 1 , χ 1 ) − ( ω 2 , χ 2 ) = ∂ ( ι ) .
Define a linear map F ι : P ⊕ V → P ⊕ V by F ι ( a + u ) : = a + ι ( a ) + u , a ∈ F ι , u ∈ V . Then it is easy to verify that F ι is an isomorphism of these two abelian extensions ( P ⊕ V , • ω 1 , M χ 1 ) and ( P ⊕ V , • ω 2 , M χ 2 ) . □

5. Skeletal Modified Rota-Baxter Pre-Lie 2-Algebras

In this section, we introduce the notion of modified Rota-Baxter pre-Lie 2-algebras and show that skeletal modified Rota-Baxter pre-Lie 2-algebras are classified by 3-cocycles of modified Rota-Baxter pre-Lie algebras.
We first recall the definition of pre-Lie 2-algebras from [15], which is a categorization of a pre-Lie algebra.
A pre-Lie 2-algebra is a quintuple ( P 0 , P 1 , h , l 2 , l 3 ) , where h : P 1 → P 0 is a linear map, l 2 : P i × P j → P i + j are bilinear maps and l 3 : P 0 × P 0 × P 0 → P 1 is a trilinear map, such that for any a , b , c , x ∈ P 0 and u , v ∈ P 1 , the following equations are satisfied:
h l 2 ( a , u ) = l 2 ( a , h ( u ) ) ,
h l 2 ( u , a ) = l 2 ( h ( u ) , a ) ,
l 2 ( h ( u ) , v ) = l 2 ( u , h ( v ) ) ,
h l 3 ( a , b , c ) = l 2 ( a , l 2 ( b , c ) ) − l 2 ( l 2 ( a , b ) , c ) − l 2 ( b , l 2 ( a , c ) ) + l 2 ( l 2 ( b , a ) , c ) ,
l 3 ( a , b , h ( u ) ) = l 2 ( a , l 2 ( b , u ) ) − l 2 ( l 2 ( a , b ) , u ) − l 2 ( b , l 2 ( a , u ) ) + l 2 ( l 2 ( b , a ) , u ) ,
l 3 ( h ( u ) , b , c ) = l 2 ( u , l 2 ( b , c ) ) − l 2 ( l 2 ( u , b ) , c ) − l 2 ( b , l 2 ( u , c ) ) + l 2 ( l 2 ( b , u ) , c ) , l 2 ( x , l 3 ( a , b , c ) ) − l 2 ( a , l 3 ( x , b , c ) ) + l 2 ( b , l 3 ( x , a , c ) ) + l 2 ( l 3 ( a , b , x ) , c ) − l 2 ( l 3 ( x , b , a ) , c ) + l 2 ( l 3 ( x , a , b ) , c ) − l 3 ( a , b , l 2 ( x , c ) ) + l 3 ( x , b , l 2 ( a , c ) ) − l 3 ( x , a , l 2 ( b , c ) ) − l 3 ( l 2 ( x , a ) − l 2 ( a , x ) , b , c )
+ l 3 ( l 2 ( x , b ) − l 2 ( b , x ) , a , c ) − l 3 ( l 2 ( a , b ) − l 2 ( b , a ) , x , c ) = 0 .
Motivated by [23] and [30], we propose the definition of a modified Rota-Baxter pre-Lie 2-algebra.
Definition 5.1.
A modified Rota-Baxter pre-Lie 2-algebra consists of a pre-Lie 2-algebra P = ( P 0 , P 1 , h , l 2 , l 3 ) and a modified Rota-Baxter 2-operator M = ( M 0 , M 1 , M 2 ) on P , where M 0 : P 0 → P 0 , M 1 : P 1 → P 1 and M 2 : P 0 × P 0 → P 1 , for any a , b , c ∈ P 0 , u ∈ P 1 , satisfying the following equations:
M 0 ∘ h = h ∘ M 1 ,
h M 2 ( a , b ) + l 2 ( M 0 a , M 0 b ) = M 0 l 2 ( M 0 ( a ) , b ) + l 2 ( a , M 0 ( b ) ) − l 2 ( a , b ) ,
M 2 ( h ( u ) , b ) + l 2 ( M 1 u , M 0 b ) = M 1 l 2 ( M 1 ( u ) , b ) + l 2 ( u , M 0 ( b ) ) − l 2 ( u , b ) ,
M 2 ( a , h ( u ) ) + l 2 ( M 0 a , M 1 u ) = M 1 l 2 ( M 0 ( a ) , u ) + l 2 ( a , M 1 ( u ) ) − l 2 ( a , u ) , M 1 l 2 ( a , M 2 ( b , c ) ) − l 2 ( M 0 a , M 2 ( b , c ) ) + l 2 ( M 0 b , M 2 ( a , c ) ) − M 1 l 2 ( b , M 2 ( a , c ) ) − l 2 ( M 2 ( b , a ) , M 0 c ) + M 1 l 2 ( M 2 ( b , a ) , c ) + l 2 ( M 2 ( a , b ) , M 0 c ) − M 1 l 2 ( M 2 ( a , b ) , c ) + M 2 ( b , l 2 ( M 0 a , c ) + l 2 ( a , M 0 c ) ) − M 2 ( a , l 2 ( M 0 b , c ) + l 2 ( b , M 0 c ) ) + M 2 ( l 2 ( M 0 a , b ) + l 2 ( a , M 0 b ) − l 2 ( M 0 b , a ) − l 2 ( b , M 0 a ) , c ) − l 3 ( M 0 a , M 0 b , M 0 c ) + M 1 ( l 3 ( a , M 0 b , M 0 c ) + l 3 ( M 0 a , b , M 0 c ) + l 3 ( M 0 a , M 0 b , c ) )
− l 3 ( M 0 a , b , c ) − l 3 ( a , M 0 b , c ) − l 3 ( a , b , M 0 c ) + M 1 l 3 ( a , b , c ) = 0 .
We denote a modified Rota-Baxter pre-Lie 2-algebra by ( P , M ) .
A modified Rota-Baxter pre-Lie 2-algebra is said to be skeletal (resp. strict) if h = 0 (resp. l 3 = 0 , M 2 = 0 ).
First we have the following trivial example of strict modified Rota-Baxter pre-Lie 2-algebra.
Example 5.2.
For any modified Rota-Baxter pre-Lie algebra ( P , • , M ) , ( P 0 = P 1 = P , h = 0 , l 2 = • , M 0 = M 1 = M ) is a strict modified Rota-Baxter pre-Lie 2-algebra.
Proposition 5.3.
Let ( P , M ) be a modified Rota-Baxter pre-Lie 2-algebra.
(i) If ( P , M ) is skeletal or strict, then ( P 0 , • 0 , M 0 ) is a modified Rota-Baxter pre-Lie algebra, where a • 0 b = l 2 ( a , b ) for any a , b ∈ P 0 .
(ii) If ( P , M ) is strict, then ( P 1 , • 1 , M 1 ) is a modified Rota-Baxter pre-Lie algebra, where u • 1 v = l 2 ( h ( u ) , v ) = l 2 ( u , h ( v ) ) for any u , v ∈ P 1 .
(iii) If ( P , M ) is skeletal or strict, then ( P 1 ; • l , • r , M 1 ) is a representation of ( P 0 , • 0 , M 0 ) where a • l u = l 2 ( a , u ) and u • r a = l 2 ( u , a ) for a ∈ P 0 , u ∈ P 1 .
Proof. 
The (i),(ii) and (iii) can be obtained by direct verification. â–¡
Theorem 5.4.
There is a one-to-one correspondence between skeletal modified Rota-Baxter pre-Lie 2-algebras and 3-cocycles of modified Rota-Baxter pre-Lie algebras.
Proof. 
Let ( P , M ) be a skeletal modified Rota-Baxter pre-Lie 2-algebra. By Proposition 5.3, we can consider the cohomology of modified Rota-Baxter pre-Lie algebra ( P 0 , • 0 , M 0 ) with coefficients in the representation ( P 1 ; • l , • r , M 1 ) . For any a , b , c , x ∈ P 0 , combining Equations (3.1) and (5.7), we have
δ l 3 ( x , a , b , c ) = x • l l 3 ( a , b , c ) − a • l l 3 ( x , b , c ) + b • l l 3 ( x , a , c ) + l 3 ( a , b , x ) • r c − l 3 ( x , b , a ) • r c + l 3 ( x , a , b ) • r c − l 3 ( a , b , x • 0 c ) + l 3 ( x , b , a • 0 c ) − l 3 ( x , a , b • 0 c ) − l 3 ( x • 0 a − a • 0 x , b , c ) + l 3 ( x • 0 b − b • 0 x , a , c ) − l 3 ( a • 0 b − b • 0 a , x , c ) = l 2 ( x , l 3 ( a , b , c ) ) − l 2 ( a , l 3 ( x , b , c ) ) + l 2 ( b , l 3 ( x , a , c ) ) + l 2 ( l 3 ( a , b , x ) , c ) − l 2 ( l 3 ( x , b , a ) , c ) + l 2 ( l 3 ( x , a , b ) , c ) − l 3 ( a , b , l 2 ( x , c ) ) + l 3 ( x , b , l 2 ( a , c ) ) − l 3 ( x , a , l 2 ( b , c ) ) − l 3 ( l 2 ( x , a ) − l 2 ( a , x ) , b , c ) + l 3 ( l 2 ( x , b ) − l 2 ( b , x ) , a , c ) − l 3 ( l 2 ( a , b ) − l 2 ( b , a ) , x , c ) = 0 .
By Equations (3.2) and (5.12), there holds that
( − δ M M 2 − Υ l 3 ) ( a , b , c ) = − δ M M 2 ( a , b , c ) − Υ l 3 ( a , b , c ) = − M 0 a • l M 2 ( b , c ) + M 1 ( a • l M 2 ( b , c ) ) + M 0 b • l M 2 ( a , c ) − M 1 ( b • l M 2 ( a , c ) ) − M 2 ( b , a ) • r M 0 c + M 1 ( M 2 ( b , a ) • r c ) + M 2 ( a , b ) • r M 0 c − M 1 ( M 2 ( a , b ) • r c ) + M 2 ( b , M 0 a • 0 c + a • 0 M 0 c ) − M 2 ( a , M 0 b • 0 c + b • 0 M 0 c ) + M 2 ( M 0 a • 0 b + a • 0 M 0 b − M 0 b • 0 a − b • 0 M 0 a , c ) − l 3 ( M 0 a , M 0 b , M 0 c ) + M 1 ( l 3 ( a , M 0 b , M 0 c ) + l 3 ( M 0 a , b , M 0 c ) + l 3 ( M 0 a , M 0 b , c ) ) − l 3 ( M 0 a , b , c ) − l 3 ( a , M 0 b , c ) − l 3 ( a , b , M 0 c ) + M 1 l 3 ( a , b , c )
= − l 2 ( M 0 a , M 2 ( b , c ) ) + M 1 l 2 ( a , M 2 ( b , c ) ) + l 2 ( M 0 b , M 2 ( a , c ) ) − M 1 l 2 ( b , M 2 ( a , c ) ) − l 2 ( M 2 ( b , a ) , M 0 c ) + M 1 l 2 ( M 2 ( b , a ) , c ) + l 2 ( M 2 ( a , b ) , M 0 c ) − M 1 l 2 ( M 2 ( a , b ) , c ) + M 2 ( b , l 2 ( M 0 a , c ) + l 2 ( a , M 0 c ) ) − M 2 ( a , l 2 ( M 0 b , c ) + l 2 ( b , M 0 c ) ) + M 2 ( l 2 ( M 0 a , b ) + l 2 ( a , M 0 b ) − l 2 ( M 0 b , a ) − l 2 ( b , M 0 a ) , c ) − l 3 ( M 0 a , M 0 b , M 0 c ) + M 1 ( l 3 ( a , M 0 b , M 0 c ) + l 3 ( M 0 a , b , M 0 c ) + l 3 ( M 0 a , M 0 b , c ) ) − l 3 ( M 0 a , b , c ) − l 3 ( a , M 0 b , c ) − l 3 ( a , b , M 0 c ) + M 1 l 3 ( a , b , c ) = 0 .
Thus, ∂ ( l 3 , M 2 ) = ( δ l 3 , − δ M M 2 − Υ l 3 ) = 0 , that is ( l 3 , M 2 ) ∈ C MRBPLie 3 ( P 0 , P 1 ) is a 3-cocycle of modified Rota-Baxter pre-Lie algebra ( P 0 , • 0 , M 0 ) with coefficients in the representation ( P 1 ; • l , • r , M 1 ) .
Conversely, suppose that ( l 3 , M 2 ) ∈ C MRBPLie 3 ( P , V ) is a 3-cocycle of modified Rota-Baxter pre-Lie algebra ( P , • , M ) with coefficients in the representation ( V ; • l , • r , M V ) . Then ( P , M ) is a skeletal modified Rota-Baxter pre-Lie 2-algebra, where P = ( P 0 = P , P 1 = V , h = 0 , l 2 , l 3 ) and M = ( M 0 = M , M 1 = M V , M 2 ) with l 2 ( a , b ) = a • b , l 2 ( a , u ) = a • l u , l 2 ( u , a ) = u • r a for any a , b ∈ P 0 , u ∈ P 1 . □

ACKNOWLEDGEMENT

The paper is supported by the NSF of China (Grant Nos. 11461014; 12261022).

References

  1. A. Cayley. On the Theory of Analytic Forms Called Trees. Collected Mathematical Papers of Arthur Cayley. Cambridge Univ. Press, Cambridge, 1890, 3: 242–246.
  2. M. Gerstenhaber. The cohomology structure of an associative ring. Ann. Math. 1963, 78: 267–288. [CrossRef]
  3. H. Kim. Complete left-invariant affine structures on nilpotent Lie groups. J. Differ. Geom., 1986, 24: 373–394. [CrossRef]
  4. P. Etingof, A. Soloviev. Quantization of geometric classical r-matrix. Math. Res. Lett., 1999, 6: 223–228. [CrossRef]
  5. P. Etingof, T. Schedler, A. Soloviev. Set-theoretical solutions to the quantum Yang- Baxter equations. Duke Math. J., 1999, 100: 169–209. [CrossRef]
  6. A. Andrada, S. Salamon. Complex product structure on Lie algebras. Forum Math., 2005, 17: 261–295. [CrossRef]
  7. D. Burde. Left-symmetric algebras and pre-Lie algebrasin geometry and physics. Cent. Eur. J. Math., 2006, 4: 323–357. [CrossRef]
  8. C. Bai. Left-symmetric Bialgebras and an alogue of the Classical Yang-Baxter Equation. Commun. Contemp. Math. 2008,10(2): 221–260. [CrossRef]
  9. C. Bai. An introduction to pre-Lie algebras. in Algebra and Applications 1, coordinated by A. Makhlouf, ISTE-Wiley, 2020, 243-273.
  10. X. Li, D. Hou, C. Bai. Rota-Baxter operators on pre-Lie algebras. J. Nonlinear Math. Phy., 2007, 14: 269–289. [CrossRef]
  11. J. Liu. Twisting on pre-Lie algebras and quasi-pre-Lie bialgebras. 2020. arXiv:2003.11926.
  12. J. Liu, Q. Wang. Pre-Lie analogues of Poisson-Nijenhuis structures and Maurer-Cartan equations. 2020. arXiv:2004.02098.
  13. Q. Wang, Y. Sheng, C. Bai, J. Liu. Nijenhuis operators on pre-Lie algebras. Commun. Contemp. Math., 2019, 21(7): 1850050, 37 pp. [CrossRef]
  14. A. Dzhumaldil’daev. Cohomologies and deformations of right-symmetric algebras. J. Math. Sci., 1999, 93(6): 836–876. [CrossRef]
  15. Y. Sheng. Categorification of pre-Lie algebras and solutions of 2-graded classical Yang-Baxter equations. Theory Appl. Categ., 2019, 34: 269–294.
  16. G. Baxter. An analytic problem whose solution follows from a simple algebraic identity. Pacific J. Math., 1960, 10: 731–742. [CrossRef]
  17. G. C. Rota. Baxter algebras and combinatorial identities I, II. Bull. Amer. Math. Soc., 1969, 75: 325–329. [CrossRef]
  18. A. Connes, D. Kreimer. Renormalization in quantum field theory and the Riemann-Hilbert problem I: The Hopf algebra structure of graphs and the main theorem. Commun. Math. Phys., 2000, 210: 249–273. [CrossRef]
  19. A. Das. Deformations of associative Rota-Baxter operators. J. Algebra, 2020, 560: 144–180. [CrossRef]
  20. T. Chtioui, S. Mabrouk, A. Makhlouf. Cohomology and deformations of O-operators on Hom-associative algebras. J. Algebra, 2022, 604: 727–759.
  21. R. Tang, C. Bai, L. Guo, Y. Sheng. Deformations and their controlling cohomologies of O-operators. Comm. Math. Phys., 2019, 368: 665–700.
  22. R. Tang, C. Bai, L. Guo, Y. Sheng. Homotopy Rota-Baxter operators and post-Lie algebras. J. Noncommut. Geom., 2023, 17: 1–35. [CrossRef]
  23. J. Jang, Y. Sheng. Representations and cohomologies of relative Rota-Baxter Lie algebras and applications. J. Algebra, 2022, 602(7): 637–670.
  24. K. Wang, G. Zhou. Deformations and homotopy theory of Rota-Baxter algebras of any weight. 2021. arXiv:2108.06744.
  25. A. Das. Cohomology and deformations of weighted RotaCBaxter operators. J. Math. Physics, 2022, 63(9): 091703. [CrossRef]
  26. A. Das. Cohomology of weighted Rota-Baxter Lie algebras and Rota-Baxter paired operators. 2021. arXiv:2109.01972.
  27. S. Hou, Y. Sheng, Y. Zhou. 3-post-Lie algebras and relative Rota-Baxter operators of nonzero weight on 3-Lie algebras. J. Algebra, 2023, 615: 103–129. [CrossRef]
  28. S. Guo, Y. Qin, K. Wang, G. Zhou. Deformations and cohomology theory of Rota-Baxter 3-Lie algebras of arbitrary weights. J. Geom. Phys., 2023, 183: 104704. [CrossRef]
  29. S. Chen, Q. Lou, Q. Sun. Cohomologies of Rota-Baxter Lie triple systems and applications. Commun. Algebra, 2023, 51: 4299–4315. [CrossRef]
  30. S. Guo, Y. Qin, K. Wang, G. Zhou. Cohomology theory of Rota-Baxter pre-Lie algebras of arbitrary weights. arXiv:2204.13518.
  31. M. Semonov-Tian-Shansky. What is a classical r-matrix? Funct. Anal. Appl., 1983, 17: 259–272. [CrossRef]
  32. S. Zheng, L. Guo, H. Qiu. Extended Rota-Baxter algebras, diagonally colored Delannoy paths and Hopf algebras. 2024. arXiv:2401.11363.
  33. J. Jiang, Y. Sheng. Deformations of modified r-matrices and cohomologies of related algebraic structures. To appear in J. Noncommut. Geom. [CrossRef]
  34. W. Teng, S. Guo. Modified Rota-Baxter Lie-Yamaguti algebras. 2024. arXiv:2401.17726. [CrossRef]
  35. A. Das, A cohomological study of modified Rota-Baxter algebras. 2022. arXiv:2207.02273.
  36. B. Mondal, R. Saha. Cohomology of modified Rota-Baxter Leibniz algebra of weight κ, J. Alg. Appl. to appear, 2023.
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

Disclaimer

Terms of Use

Privacy Policy

Privacy Settings

© 2025 MDPI (Basel, Switzerland) unless otherwise stated