Submitted:
01 November 2023
Posted:
02 November 2023
You are already at the latest version
Abstract
Keywords:
1. Introduction
2. Materials and Methods
2.1. Study area
2.2. Sample Collection and Instrumental Analysis
2.3. Analysis of Sediment Contamination
2.3.1. Contamination factor (CF)
2.3.2. Pollution load Index (PLI)
2.3.2. Geo-accumulation index (Igeo)
2.3.3. Enrichment factor (EF)
3. Results and Discussion
3.1. Metal contamination
3.2. Analysis of Pollution Indices
3.3. Correlation coefficient
3.4. Cluster analysis (CA)
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- M. Varol and B. Şen, ‘Assessment of nutrient and heavy metal contamination in surface water and sediments of the upper Tigris River, Turkey’, Catena (Amst), vol. 92, pp. 1–10, May 2012. [CrossRef]
- Md. S. Bhuyan, M. A. Bakar, Md. Rashed-Un-Nabi, V. Senapathi, S. Y. Chung, and Md. S. Islam, ‘Monitoring and assessment of heavy metal contamination in surface water and sediment of the Old Brahmaputra River, Bangladesh’, Appl Water Sci, vol. 9, no. 5, Jul. 2019. [CrossRef]
- A. R. Karbassi, S. M. Monavari, G. R. Nabi Bidhendi, J. Nouri, and K. Nematpour, ‘Metal pollution assessment of sediment and water in the Shur River’, Environ Monit Assess, vol. 147, no. 1–3, pp. 107–116, 2008. [CrossRef]
- A. C. C. Brito et al., ‘Assessing the Distribution and Concentration of Heavy Metals in Soils of an Agricultural Frontier in the Brazilian Cerrado’, Water Air Soil Pollut, vol. 231, no. 8, Aug. 2020. [CrossRef]
- S. M. Sakan, D. S. Dordević, D. D. Manojlović, and P. S. Predrag, ‘Assessment of heavy metal pollutants accumulation in the Tisza river sediments’, J Environ Manage, vol. 90, no. 11, pp. 3382–3390, Aug. 2009. [CrossRef]
- F. Xie et al., ‘Characteristics and Health Risk Assessment of Organochlorine Pesticides (OCPs) Residues Along Sino-Russian Boundary River’, Water Air Soil Pollut, vol. 231, no. 10, Oct. 2020. [CrossRef]
- M. I. Ahamad et al., ‘Contamination level, ecological risk, and source identification of heavy metals in the hyporheic zone of the weihe river, China’, Int J Environ Res Public Health, vol. 17, no. 3, Feb. 2020. [CrossRef]
- H. Chen, R. Chen, Y. Teng, and J. Wu, ‘Contamination characteristics, ecological risk and source identification of trace metals in sediments of the Le’an River (China)’, Ecotoxicol Environ Saf, vol. 125, pp. 85–92, Mar. 2016. [CrossRef]
- Y. J. A. B. Da Silva, J. R. B. Cantalice, V. P. Singh, C. W. A. Do Nascimento, B. P. Wilcox, and Y. J. A. Bezerra Da Silva, ‘Heavy metal concentrations and ecological risk assessment of the suspended sediments of a multi-contaminated Brazilian watershed’, Acta Sci Agron, vol. 41, no. 1, 2019. [CrossRef]
- P. Patel, N. J. Raju, B. C. S. R. Reddy, U. Suresh, D. B. Sankar, and T. V. K. Reddy, ‘Heavy metal contamination in river water and sediments of the Swarnamukhi River Basin, India: risk assessment and environmental implications’, Environ Geochem Health, vol. 40, no. 2, pp. 609–623, Apr. 2018. [CrossRef]
- Xu, H. Yan, and S. Zhang, ‘Heavy metal enrichment and health risk assessment of karst cave fish in Libo, Guizhou, China’, Alexandria Engineering Journal, vol. 60, no. 1, pp. 1885–1896, Feb. 2021. [CrossRef]
- E. A. M. Salah, T. A. Zaidan, and A. S. Al-Rawi, ‘Assessment of Heavy Metals Pollution in the Sediments of Euphrates River, Iraq’, J Water Resour Prot, vol. 04, no. 12, pp. 1009–1023, 2012. [CrossRef]
- K. Sekabira, H. Oryem Origa;, T. A. Basamba, G. Mutumba, and E. Kakudidi, ‘Assessment of heavy metal pollution in the urban stream sediments and its tributaries’, Int. J. Environ. Sci. Tech, vol. 7, no. 3, pp. 435–446, 2010.
- S. Olivares-Rieumont et al., ‘Assessment of heavy metal levels in Almendares River sediments - Havana City, Cuba’, Water Res, vol. 39, no. 16, pp. 3945–3953, 2005. [CrossRef]
- F. Xu et al., ‘Assessment of heavy metal contamination in urban river sediments in the Jiaozhou Bay catchment, Qingdao, China’, Catena (Amst), vol. 150, pp. 9–16, Mar. 2017. [CrossRef]
- M. S. Islam, M. K. Ahmed, M. Raknuzzaman, M. Habibullah -Al- Mamun, and M. K. Islam, ‘Heavy metal pollution in surface water and sediment: A preliminary assessment of an urban river in a developing country’, Ecol Indic, vol. 48, pp. 282–291, 2015. [CrossRef]
- M. Varol and B. Şen, ‘Assessment of nutrient and heavy metal contamination in surface water and sediments of the upper Tigris River, Turkey’, Catena (Amst), vol. 92, pp. 1–10, May 2012. [CrossRef]
- S. N. Sin, H. Chua, W. Lo, and L. M. Ng, ‘Assessment of heavy metal cations in sediments of Shing Mun River, Hong Kong’. [Online]. Available: www.elsevier.com/locate/envint.
- Wijesiri et al., ‘Nutrients and metals interactions between water and sediment phases: An urban river case study’, Environmental Pollution, vol. 251, pp. 354–362, Aug. 2019. [CrossRef]
- M. Varol, ‘Assessment of heavy metal contamination in sediments of the Tigris River (Turkey) using pollution indices and multivariate statistical techniques’, J Hazard Mater, vol. 195, pp. 355–364, Nov. 2011. [CrossRef]
- G. Müller, M. Singh, I. B. Singh, and A. A. Ansari, ‘Heavy metals in freshly deposited sediments of the Gomati River (a tributary of the Ganga River): effects of human activities’, Springer-Verlag, 1997.
- B. Jin et al., ‘Pollution, Ecological Risk and Source Identification of Heavy Metals in Sediments from the Huafei River in the Eastern Suburbs of Kaifeng, China’, Int J Environ Res Public Health, vol. 19, no. 18, Sep. 2022. [CrossRef]
- A. D. G. Al-Afify and A. M. Abdel-Satar, ‘Heavy Metal Contamination of the River Nile Environment, Rosetta Branch, Egypt’, Water Air Soil Pollut, vol. 233, no. 8, Aug. 2022. [CrossRef]
- J. Guan et al., ‘Heavy metals in Yinma River sediment in a major Phaeozems zone, Northeast China: Distribution, chemical fraction, contamination assessment and source apportionment’, Sci Rep, vol. 8, no. 1, Dec. 2018. [CrossRef]
- H. Malvandi, ‘Preliminary evaluation of heavy metal contamination in the Zarrin-Gol River sediments, Iran’, Mar Pollut Bull, vol. 117, no. 1–2, pp. 547–553, Apr. 2017. [CrossRef]
- X. Ke, S. Gui, H. Huang, H. Zhang, C. Wang, and W. Guo, ‘Ecological risk assessment and source identification for heavy metals in surface sediment from the Liaohe River protected area, China’, Chemosphere, vol. 175, pp. 473–481, 2017. [CrossRef]
- M. S. Bhuyan and M. A. Bakar, ‘Seasonal variation of heavy metals in water and sediments in the Halda River, Chittagong, Bangladesh’, Environmental Science and Pollution Research, vol. 24, no. 35, pp. 27587–27600, Dec. 2017. [CrossRef]
- J. Pandey and R. Singh, ‘Heavy metals in sediments of Ganga River: up- and downstream urban influences’, Appl Water Sci, vol. 7, no. 4, pp. 1669–1678, Jul. 2017. [CrossRef]
- G. O. Duodu, A. Goonetilleke, and G. A. Ayoko, ‘Potential bioavailability assessment, source apportionment and ecological risk of heavy metals in the sediment of Brisbane River estuary, Australia’, Mar Pollut Bull, vol. 117, no. 1–2, pp. 523–531, Apr. 2017. [CrossRef]
- M. Hassan, M. A. T. M. Tanvir Rahman, B. Saha, and A. K. I. Kamal, ‘Status of heavy metals in water and sediment of the Meghna River, Bangladesh’, Am J Environ Sci, vol. 11, no. 6, pp. 427–439, 2015. [CrossRef]
- A. R. S. Zohreh Mirsalari, ‘Distribution and Seasonal Variation of Heavy Metal in Surface Sediments from Arvand River, Persian Gulf’, Journal of Marine Science: Research & Development, vol. 04, no. 03, 2014. [CrossRef]
- J. Fu et al., ‘Heavy metals in surface sediments of the Jialu River, China: Their relations to environmental factors’, J Hazard Mater, vol. 270, pp. 102–109, Apr. 2014. [CrossRef]
- W. Y. Lim, A. Z. Aris, and T. H. Tengku Ismail, ‘Spatial Geochemical Distribution and Sources of Heavy Metals in the Sediment of Langat River, Western Peninsular Malaysia’, Environ Forensics, vol. 14, no. 2, pp. 133–145, 2013. [CrossRef]
- F. Ye, X. Huang, D. Zhang, L. Tian, and Y. Zeng, ‘Distribution of heavy metals in sediments of the Pearl River Estuary, Southern China: Implications for sources and historical changes’, Journal of Environmental Sciences, vol. 24, no. 4, pp. 579–588, Apr. 2012. [CrossRef]
- A. Taghinia Hejabi, H. T. Basavarajappa, A. R. Karbassi, and S. M. Monavari, ‘Heavy metal pollution in water and sediments in the Kabini River, Karnataka, India’, Environ Monit Assess, vol. 182, no. 1–4, pp. 1–13, Nov. 2011. [CrossRef]
- A. Farkas, C. Erratico, and L. Viganò, ‘Assessment of the environmental significance of heavy metal pollution in surficial sediments of the River Po’, Chemosphere, vol. 68, no. 4, pp. 761–768, 2007. [CrossRef]
- H. Akcay, A. Oguz, and C. Karapire, ‘Study of heavy metal pollution and speciation in Buyak Menderes and Gediz river sediments’, 2003.
- J. Morillo, J. Usero, and I. Gracia, ‘Heavy metal fractionation in sediments from the Tinto river (Spain)’, Int J Environ Anal Chem, vol. 82, no. 4, pp. 245–257, 2002. [CrossRef]
- K. P. Singh, A. Malik, S. Sinha, V. K. Singh, and R. C. Murthy, ‘ESTIMATION OF SOURCE OF HEAVY METAL CONTAMINATION IN SEDIMENTS OF GOMTI RIVER (INDIA) USING PRINCIPAL COMPONENT ANALYSIS’.
- M. Varol and B. Şen, ‘Assessment of nutrient and heavy metal contamination in surface water and sediments of the upper Tigris River, Turkey’, Catena (Amst), vol. 92, pp. 1–10, May 2012. [CrossRef]
- J. Liao, J. Chen, X. Ru, J. Chen, H. Wu, and C. Wei, ‘Heavy metals in river surface sediments affected with multiple pollution sources, South China: Distribution, enrichment and source apportionment’, J Geochem Explor, vol. 176, pp. 9–19, May 2017. [CrossRef]
- S. Olivares-Rieumont et al., ‘Assessment of heavy metal levels in Almendares River sediments - Havana City, Cuba’, Water Res, vol. 39, no. 16, pp. 3945–3953, 2005. [CrossRef]
- Md. S. Bhuyan, M. A. Bakar, Md. Rashed-Un-Nabi, V. Senapathi, S. Y. Chung, and Md. S. Islam, ‘Monitoring and assessment of heavy metal contamination in surface water and sediment of the Old Brahmaputra River, Bangladesh’, Appl Water Sci, vol. 9, no. 5, Jul. 2019. [CrossRef]


| S. No. | Seasons | Metal Concentration (mg kg-1) | |||||||||
| Li | Na | Mg | Al | Ca | Fe | Cu | Zn | Co | Ni | ||
| S-1 | Pre- Monsoon | 0.048 | 32.383 | 140.741 | 341.852 | 39.912 | 739.951 | 1.103 | 0.693 | 1.151 | 0.456 |
| Monsoon | 0.039 | 21.962 | 108.641 | 479.472 | 25.873 | 1133.822 | 2.263 | 1.457 | 0.965 | 0.796 | |
| Post- Monsoon | 0.056 | 26.218 | 128.862 | 386.637 | 32.872 | 989.549 | 1.492 | 0.879 | 1.262 | 0.573 | |
| Winter | 0.051 | 28.983 | 133.264 | 352.916 | 33.648 | 762.161 | 1.166 | 0.795 | 1.183 | 0.475 | |
| Average value | 0.049 | 27.387 | 127.877 | 390.219 | 33.076 | 906.371 | 1.506 | 0.956 | 1.140 | 0.575 | |
| S-2 | Pre- Monsoon | 0.057 | 31.752 | 142.467 | 332.852 | 36.647 | 718.246 | 1.410 | 0.728 | 1.172 | 0.509 |
| Monsoon | 0.043 | 21.484 | 113.646 | 463.173 | 21.527 | 1076.161 | 2.353 | 1.691 | 0.976 | 0.892 | |
| Post- Monsoon | 0.069 | 25.017 | 135.757 | 372.374 | 30.982 | 972.076 | 1.583 | 1.05 | 1.326 | 0.616 | |
| Winter | 0.061 | 28.674 | 137.442 | 345.751 | 31.473 | 732.807 | 1.506 | 0.899 | 1.273 | 0.568 | |
| Average value | 0.058 | 26.732 | 132.328 | 378.538 | 30.157 | 874.823 | 1.713 | 1.092 | 1.187 | 0.646 | |
| S-3 | Pre- Monsoon | 0.068 | 29.738 | 152.262 | 313.786 | 34.342 | 703.972 | 1.924 | 1.085 | 1.176 | 0.535 |
| Monsoon | 0.052 | 20.141 | 122.528 | 443.284 | 19.638 | 1099.291 | 2.965 | 2.09 | 0.983 | 0.953 | |
| Post- Monsoon | 0.077 | 23.41 | 144.742 | 357.438 | 28.347 | 956.752 | 2.179 | 1.383 | 1.387 | 0.692 | |
| Winter | 0.071 | 27.374 | 146.472 | 330.264 | 29.793 | 716.992 | 1.968 | 1.126 | 1.281 | 0.572 | |
| Average value | 0.067 | 25.166 | 141.501 | 361.193 | 28.030 | 869.252 | 2.259 | 1.421 | 1.207 | 0.688 | |
| S-4 | Pre- Monsoon | 0.065 | 25.895 | 167.286 | 287.732 | 32.842 | 581.862 | 1.472 | 0.998 | 1.130 | 0.390 |
| Monsoon | 0.050 | 18.462 | 137.866 | 425.683 | 16.749 | 982.653 | 2.526 | 1.922 | 0.951 | 0.614 | |
| Post- Monsoon | 0.072 | 22.173 | 158.742 | 352.693 | 26.476 | 754.528 | 1.843 | 1.294 | 1.295 | 0.501 | |
| Winter | 0.067 | 24.021 | 161.573 | 302.744 | 27.638 | 590.372 | 1.511 | 1.094 | 1.247 | 0.414 | |
| Average value | 0.064 | 22.638 | 156.367 | 342.213 | 25.926 | 727.354 | 1.838 | 1.327 | 1.156 | 0.480 | |
| S-5 | Pre- Monsoon | 0.047 | 22.946 | 104.451 | 233.739 | 25.852 | 415.795 | 0.969 | 0.686 | 0.779 | 0.323 |
| Monsoon | 0.036 | 16.894 | 89.741 | 364.153 | 13.231 | 911.658 | 1.972 | 1.556 | 0.597 | 0.593 | |
| Post- Monsoon | 0.054 | 18.688 | 96.065 | 312.753 | 18.887 | 666.926 | 1.262 | 0.828 | 0.852 | 0.390 | |
| Winter | 0.050 | 20.458 | 100.231 | 247.025 | 20.236 | 432.897 | 0.993 | 0.718 | 0.811 | 0.349 | |
| Average value | 0.047 | 19.747 | 97.622 | 289.418 | 19.552 | 606.819 | 1.299 | 0.947 | 0.760 | 0.414 | |
| S-6 | Pre- Monsoon | 0.046 | 22.863 | 94.052 | 229.937 | 26.998 | 309.682 | 0.842 | 0.706 | 0.727 | 0.332 |
| Monsoon | 0.034 | 16.426 | 77.459 | 358.583 | 15.098 | 799.854 | 1.882 | 1.562 | 0.548 | 0.598 | |
| Post- Monsoon | 0.053 | 18.219 | 84.362 | 309.482 | 19.931 | 628.874 | 1.212 | 0.922 | 0.896 | 0.396 | |
| Winter | 0.050 | 20.316 | 89.984 | 242.219 | 22.626 | 327.215 | 0.869 | 0.714 | 0.844 | 0.354 | |
| Average value | 0.046 | 19.456 | 86.464 | 285.055 | 21.163 | 516.406 | 1.201 | 0.976 | 0.754 | 0.420 | |
| S. No. | Contamination factor | PLI | |||||||||
| Li | Na | Mg | Al | Ca | Fe | Cu | Zn | Co | Ni | ||
| S-1 | 1.244 | 1.330 | 1.232 | 1.356 | 1.696 | 1.504 | 1.448 | 1.059 | 1.508 | 1.459 | 1.373 |
| S-2 | 1.474 | 1.298 | 1.274 | 1.316 | 1.546 | 1.452 | 1.647 | 1.209 | 1.570 | 1.640 | 1.435 |
| S-3 | 1.718 | 1.222 | 1.363 | 1.255 | 1.437 | 1.442 | 2.172 | 1.574 | 1.596 | 1.746 | 1.531 |
| S-4 | 1.628 | 1.099 | 1.506 | 1.189 | 1.329 | 1.207 | 1.767 | 1.470 | 1.529 | 1.218 | 1.379 |
| S-5 | 1.199 | 0.959 | 0.940 | 1.006 | 1.002 | 1.007 | 1.249 | 1.049 | 1.005 | 1.050 | 1.043 |
| S-6 | 1.173 | 0.945 | 0.833 | 0.991 | 1.085 | 0.857 | 1.155 | 1.081 | 0.997 | 1.066 | 1.012 |
| Ave. Value | 1.406 | 1.142 | 1.191 | 1.185 | 1.349 | 1.245 | 1.573 | 1.240 | 1.368 | 1.363 | 1.296 |
| Max. Value | 1.718 | 1.330 | 1.506 | 1.356 | 1.696 | 1.504 | 2.172 | 1.574 | 1.596 | 1.746 | 1.531 |
| Min. Value | 1.173 | 0.945 | 0.833 | 0.991 | 1.002 | 0.857 | 1.155 | 1.049 | 0.997 | 1.050 | 1.012 |
| S. No. | Geo-accumulation index | |||||||||
| Li | Na | Mg | Al | Ca | Fe | Cu | Zn | Co | Ni | |
| S-1 | -0.270 | -0.174 | -0.284 | -0.145 | 0.177 | 0.004 | -0.051 | -0.503 | 0.008 | -0.040 |
| S-2 | -0.025 | -0.208 | -0.235 | -0.189 | 0.044 | -0.047 | 0.135 | -0.311 | 0.066 | 0.129 |
| S-3 | 0.196 | -0.296 | -0.138 | -0.257 | -0.062 | -0.057 | 0.534 | 0.069 | 0.090 | 0.219 |
| S-4 | 0.118 | -0.448 | 0.006 | -0.335 | -0.175 | -0.314 | 0.237 | -0.030 | 0.027 | -0.301 |
| S-5 | -0.323 | -0.645 | -0.674 | -0.577 | -0.582 | -0.575 | -0.264 | -0.516 | -0.578 | -0.514 |
| S-6 | -0.355 | -0.667 | -0.849 | -0.598 | -0.467 | -0.808 | -0.377 | -0.473 | -0.589 | -0.493 |
| Ave. Value | -0.110 | -0.406 | -0.362 | -0.350 | -0.178 | -0.300 | 0.036 | -0.294 | -0.163 | -0.167 |
| Max. Value | 0.196 | -0.174 | 0.006 | -0.145 | 0.177 | 0.004 | 0.534 | 0.069 | 0.090 | 0.219 |
| Min. Value | -0.355 | -0.667 | -0.849 | -0.598 | -0.582 | -0.808 | -0.377 | -0.516 | -0.589 | -0.514 |
| S. No. | Enrichment factor | |||||||||
| Li | Na | Mg | Al | Ca | Fe | Cu | Zn | Co | Ni | |
| S-1 | 0.827 | 0.884 | 0.819 | 0.902 | 1.127 | 1.000 | 0.963 | 0.704 | 1.003 | 0.970 |
| S-2 | 1.016 | 0.894 | 0.878 | 0.906 | 1.065 | 1.000 | 1.135 | 0.833 | 1.081 | 1.130 |
| S-3 | 1.191 | 0.847 | 0.945 | 0.870 | 0.996 | 1.000 | 1.506 | 1.091 | 1.107 | 1.211 |
| S-4 | 1.349 | 0.911 | 1.248 | 0.985 | 1.101 | 1.000 | 1.464 | 1.218 | 1.267 | 1.009 |
| S-5 | 1.191 | 0.952 | 0.934 | 0.999 | 0.995 | 1.000 | 1.240 | 1.042 | 0.998 | 1.043 |
| S-6 | 1.369 | 1.103 | 0.972 | 1.156 | 1.266 | 1.000 | 1.348 | 1.261 | 1.164 | 1.244 |
| Ave. Value | 1.157 | 0.932 | 0.966 | 0.970 | 1.092 | 1.000 | 1.276 | 1.025 | 1.103 | 1.101 |
| Max. Value | 1.369 | 1.103 | 1.248 | 1.156 | 1.266 | 1.000 | 1.506 | 1.261 | 1.267 | 1.244 |
| Min. Value | 0.827 | 0.847 | 0.819 | 0.870 | 0.995 | 1.000 | 0.963 | 0.704 | 0.998 | 0.970 |
| Name of River | Maximum Concentration (mg kg-1) | References | |||||||||
| Li | Na | Mg | Al | Ca | Fe | Cu | Zn | Co | Ni | ||
| Narmada River | 0.08 | 32.38 | 167.29 | 479.47 | 39.91 | 1133.82 | 2.97 | 2.09 | 1.39 | 0.95 | This study |
| Huafei River | - | - | - | - | - | - | 866.90 | 4206.97 | - | 101.35 | [22] |
| NileRiver | - | - | - | - | - | 50814 | 49.52 | 166.56 | 29.85 | 62.74 | [23] |
| Weihe River | - | - | - | - | - | - | 69.34 | 143.64 | - | 62.38 | [7] |
| Old Brahmaputra | - | - | - | 90000 | - | - | 6.20 | 52.7 | 4.10 | 12.8 | [2] |
| Yinma River | - | - | - | - | - | - | 23.80 | 151.15 | - | 25.06 | [24] |
| Swarnamukhi River | - | - | - | - | - | 23296 | 108.3 | 40.93 | 7.22 | 6 | [10] |
| Zarrin-Gol River | - | - | 785.96 | 2923.86 | - | 13751.04 | - | 32.68 | 8.79 | 12.39 | [25] |
| Liaohe River | - | - | - | - | - | - | 17.82 | 50.24 | - | 17.73 | [26] |
| Halda River | - | - | - | 9316.83 | - | - | 5.90 | 79.58 | 4.92 | 15.97 | [27] |
| River Ganga | - | - | - | - | - | 31988.6 | 29.8 | 67.8 | - | 26.7 | [28] |
| Brisbane River | - | - | - | - | - | - | 29 | 106.6 | - | 15.3 | [29] |
| Le’an River | - | - | - | - | - | - | 1428.4 | 1280.11 | - | 44.36 | [8] |
| Meghna River | - | - | - | - | - | - | - | 79.02 | - | 76.1 | [30] |
| Arvind River | - | - | - | - | - | - | 22.5 | - | 26.81 | 64.5 | [31] |
| Jialu River | - | - | - | - | - | - | 107.61 | 210 | 80.26 | [32] | |
| Langat River | - | - | - | - | - | - | 14.84 | 74.70 | - | 8.25 | [33] |
| Pearl River | - | - | - | - | - | - | - | 189.49 | - | - | [34] |
| Euphrates, River | - | - | - | - | - | 2249.5 | 18.9 | 48.0 | - | 67.1 | [12] |
| Kabini River | - | - | - | - | - | 1855.7 | 161.03 | 191 | - | 280.32 | [35] |
| Tigris River | - | - | - | - | - | - | 5075.6 | 2396.6 | 389.8 | 288.0 | [20] |
| River Po | - | - | - | - | - | - | 90.1 | 645 | - | 161 | [36] |
| Gediz river | - | - | - | - | - | 18233 | 56 | 72 | 25 | 51 | [37] |
| Tinto River | - | - | - | - | - | - | 2700 | 5280 | 42 | 36 | [38] |
| Gomti River | - | - | - | - | - | 19305.5 | 245.33 | 343.47 | - | 76.08 | [39] |
| Shing Mun River | - | - | - | 114 | - | - | 1.66 | 2.2 | - | - | [18] |
| Li | Na | Mg | Al | Ca | Fe | Cu | Zn | Co | Ni | |
| Li | 1 | |||||||||
| Na | 0.620 | 1 | ||||||||
| Mg | 0.366 | 0.927 | 1 | |||||||
| Al | -0.955 | -0.584 | -0.262 | 1 | ||||||
| Ca | 0.697 | 0.982 | 0.842 | -0.702 | 1 | |||||
| Fe | -0.969 | -0.573 | -0.259 | 0.998 | -0.687 | 1 | ||||
| Cu | -0.923 | -0.416 | -0.073 | 0.981 | -0.552 | 0.982 | 1 | |||
| Zn | -0.956 | -0.563 | -0.240 | 1.000 | -0.683 | 0.999 | 0.986 | 1 | ||
| Co | 0.876 | 0.824 | 0.725 | -0.736 | 0.812 | -0.756 | -0.631 | -0.729 | 1 | |
| Ni | -0.900 | -0.389 | -0.038 | 0.974 | -0.533 | 0.973 | 0.998 | 0.979 | -0.589 | 1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).