Preprint
Article

This version is not peer-reviewed.

The Polynomial t2(4x − n)2 − 2ntx Does Not Always Admits a Perfect Square

Submitted:

31 December 2025

Posted:

31 December 2025

You are already at the latest version

Abstract
In this article we show that the polynomial \( t^2(4x - n)^2 - 2ntx \) does not always admits a perfect square with \( n\geq 2 \) and \( (x,t)\in \mathbb{(N^*)^2} \). We prove this when \( n=3 \) and we show by contradiction that one of x or t (in the expression \( t^2(4x - 3)^2 - 6tx \)) isn't an integer.
Keywords: 
;  ;  
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

Disclaimer

Terms of Use

Privacy Policy

Privacy Settings

© 2025 MDPI (Basel, Switzerland) unless otherwise stated