Submitted:
21 June 2025
Posted:
23 June 2025
You are already at the latest version
Abstract
Keywords:
1. Introduction
2. Materials and Methods
2.1. Experiment Design and Field Management
2.2. Analyses of Soil
2.3. Chemical Properties of Soil
2.4. Physical Properties of Soil
2.5. Enzymatic Activity of Soil
2.6. Biological Properties of Soil
2.7. Statistical Analysis
3. Results
3.1. Chemical Properties of Soil
3.2. Physical Properties of Soil
4. Discussion
4.1. Chemical Properties of Soil
4.2. Physical Properties of Soil
4.3. Biological Properties and Enzymatic Activity of Soil
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Uhlmann, N.K.; Beckles, D.M. Storage products and transcriptional analysis of the endosperm of cultivated wheat and two wild wheat species. J. Appl. Genet. 2010, 51, 431–447. [CrossRef]
- Bastida, F.; Moreno, J.L.; Hernandez, T.; Garcia, C. Microbiological degradation index of soils in a semiarid climate Soil Biol. Biochem. 2006, 38(12), 3463-3473. [CrossRef]
- Cooper, J. Soil Structure, Management and Effect on Nutrient Availability and Crop Production. Organic Producer Conference, Facing Current and Future Challenges, Newcastle University, 17 January 2011. http://www.ksre.ksu.edu/fieldday/kids/soil_pit/soil_structure.htm.
- Biswas, J.C.; Naveen, K.; Maniruzzaman, M.; Naher, U.A.; Haque, M.M. Soil Health Assessment Methods and Relationship with Wheat Yield. Open Journal of Soil Science, 2019, 9, 189-205. [CrossRef]
- El-Hassanin, A.S.; Samak, M.R.; Atta, Y. et al. Controlled Drainage and Irrigation Regime for Improving Some Soil Properties and Wheat Production, Sahl El-Tina, Sinai Peninsula, Egypt. Water Conserv. Sci. Eng. 2022, 7, 375–388. [CrossRef]
- Gruver, J.B.; Weil, R.R. Farmer Perceptions of Soil Quality and Their Relationship to Management-Sensitive Soil Parameters. Renewable Agriculture and Food Systems 2007, 22, 271-281. [CrossRef]
- Loganathan, M.; Narendiran, J. Pollution of Soil Due To Leather Factory Near Ranipet, Tamil Nadu (India). International Journal of Emerging Trends in Science and Technology (IJETST), 2014, 01, 02, 86-90. https://journals.indexcopernicus.com/api/file/viewByFileId/149571.
- Franchini, J.C.; Crispino, C.C.; Souza, R.A.; Torres, E.; M. Hungria, M. Microbiological parameters as indicators of soil quality under various soil management and crop rotation systems in southern. Brazil. Soil Till. Res. 2007, 92(1-2),18-29. [CrossRef]
- Shukla, M.K.; Lal, R.; Ebinger, M. Determining soil quality indicators by factor analysis, Soil and Tillage Research 2006, 87, 2, 194-204, ISSN 0167-1987. [CrossRef]
- Parr, J.F; Papendick, R.I.; Hornick, S.B.; Meyer, R.E. Soil quality: Attributes and relationship to alternative and sustainable agriculture. American Journal of Alternative Agriculture 1992, 7(1-2), 5-11. [CrossRef]
- Laishram, J.; Saxena, K.G.; Maikhuri, R.K.; Rao, K.S. Soil Quality and Soil Health: A Review. International Journal of Ecology and Environmental Sciences 2012, 38, 19-37. https://www.scribd.com/document/388026705/soil-quality-and-soil-healthpdf-pdf.
- Terashima, M.; Mihara, M. Interactions among soil physical, chemical and biological properties under different farming systems. Int. J. Environ. Rural Develop. 2022, 13(1), 1-6. https://iserd.net/ijerd131/13-1-1.pdf.
- Medan, D.; Torretta, J.P.; Hodara, K.; de la Fuente, E.B.; Montaldo, N.H. Effects of agriculture expansion and intensification on the vertebrate and invertebrate diversity in the Pampas of Argentina. Biodivers. Conserv. 2011, 20, 3077–3100. [CrossRef]
- Komatsuzaki, M.; Ohta, H. Soil Management Practices for Sustainable Agro-Ecosystems. Sustainability Science 2007, 2, 103-120. [CrossRef]
- Ouda, S.; Noreldin, T.; Alarcón, J.J.; Ragab, R.; Caruso, G.; Sekara, A.; Abdelhamid, M.T. Response of Spring Wheat (Triticum aestivum) to Deficit Irrigation Management under the Semi-Arid Environment of Egypt: Field and Modeling Study. Agriculture 2021, 11, 90. [CrossRef]
- Carvalho, M.; Carvalho, S.; Rodrigues, G.; Ferreira, L. Efeito do estresse hídrico na fisiologia e no crescimento inicial de plantas de batata. Revista Brasileira de Engenharia Agrícola e Ambiental 2018, 22, 38-44. [CrossRef]
- Calow, Roger C., Howarth, Simon E. and Wang, Jinxia. 'Irrigation Development and Water Rights Reform in China'. International Journal of Water Resources Development 2009, 25,2, 227.. [CrossRef]
- Ranjbar A., Sepaskhah A.R., Emadi S. Relationships between wheat yield, yield components and physico-chemical properties of soil under rain-fed conditions. International Journal of Plant Production 2015, 9(3), 433-466. https://www.researchgate.net/publication/282315376_Relationships_between_wheat_yield_yield_components_and_physico-chemical_properties_of_soil_under_rain-fed_conditions.
- Gong, F. The Role of Water in Soil Formation and Development. J. Soil Sci. Plant Nutr. 2023, 7:3.
- Fadl, M.E.; Sayed, Y.A.; El-Desoky, A.I.; Shams, E.M.; Zekari, M.; Abdelsamie, E.A.; Drosos, M.; Scopa, A. Irrigation Practices and Their Effects on Soil Quality and Soil Characteristics in Arid Lands: A Comprehensive Geomatic Analysis. Soil Syst. 2024, 8, 52. [CrossRef]
- Thalmann, A. Zur Methodik der Bestimmung der Dehydrogenase Aktivität in Boden mittels Triphenyl tetrazolium chlorid (TTC). Landwirtsch. Forsch. 1968, 21, 249–258.
- Tabatabai, M.A.; Bremner, J.M. Use of p-nitrophenyl phosphate for assay of soil phosphatase activity. Soil Biol. Biochem. 1969, 1, 301–307. [CrossRef]
- Zantua, M.I.; Bremner, J.M. Comparison of methods of assaying urease activity in soils. Soil Biol. Biochem. 1975, 7, 291–295. [CrossRef]
- Ladd, N.; Butler, J.H.A. Short-term assays of soil proteolytic enzyme activities using proteins and dipeptide derivatives as substrates. Soil Biol. Biochem. 1972, 4, 19–30. [CrossRef]
- Foght, J.; Aislabie, J. Enumeration of Soil Microorganisms. In Monitoring and Assessing Soil Bioremediation. Soil Biology Part 5; Margesin, R., Schinner, F., Eds.; Springer: Berlin/Heidelberg, Germany, 2005; 261–280. [CrossRef]
- Martin, J.P. Use of acid rose bengal and streptomycin in the plate method for estimating soil fungi. Soil Sci. 1950, 69, 215–232. [CrossRef]
- Choi, Y.W.; Hyde, K.D.; Ho, W.W.H. Single spore isolation of fungi. Fungal Diversity 1999, 29–38. https://www.researchgate.net/publication/228482364_Single_spore_isolation_of_fungi.
- Domsch, K.H.; Gams, W.; Anderson, T.H. Compendium of soil fungi. Academic Press London, 1980, 1-2.
- Wallace, R.; Lochhead, A. Qualitative studies of soil microorganisms IX. Amino acid requirements of rhizosphere bacteria. Canadian Journal of Research, Sect. C Bot. Sci. 1950, 28, 1-6. [CrossRef]
- Badura, L.; Smyłła, A. Wybrane metody izolowania promieniowców z gleby [Selected methods of isolating actinomycetes from soil]. Prace Komisji Naukowych. 3/23. Warszawa, 1979, PTG. Komisja Biologii Gleby. ISSN 0208-9505 ss. 15. [in Polish].
- Wang, Y.,; Tu, C,; Cheng, L,; Li, C,; Gentry, L.F,; Hoyt, G.D,; Zhang, X,; Hu, S. Long-term impact of farming practices on soil organic carbon and nitrogen pools and microbial biomass and activity. Soil Till. Res. 2011, 117, 8-16. [CrossRef]
- Lal, R. Challenges and opportunities in soil organic matter research. Eur. J. Soil Sci. 2009, 60, 158–169. [CrossRef]
- Maucieri, C.; Tolomio, M.; Raimondi, G.; Toffanin, A.; Morari, F.; Berti, A.; Borin, M. Organic versus conventional farming: Medium-term evaluation of soil chemical properties, Italian Journal of Agronomy 2022, 17, 3, 2114. [CrossRef]
- Fließbach, A,; Oberholzer, H.R,; Gunst, L,; Mäder P. Soil organic matter and biological soil quality indicators after 21 years of organic and conventional farming. Agric. Ecosyst. Environ. 2007, 118, 273-284. [CrossRef]
- Joergensen, R.G.; Mader, P.; Fließbach, A. Long-term effects of organic farming on fungal and bacterial residues in relation to microbial energy metabolism. Biol. Fertil. Soils 2010, 46, 303–307. [CrossRef]
- Askegaard, M.; Eriksen, J.; Olesen, J.E. Exchangeable potassium and potassium balances in organic crop rotations on a coarse sand. Soil Use Manag. 2003, 19, 96–103. [CrossRef]
- Gosling, P.; Shepherd, M. Long-term changes in soil fertility in organic arable farming systems in England. with particular reference to phosphorus and potassium. Agric. Ecosyst. Environ. 2005, 105, 425–432. [CrossRef]
- Kwiatkowski, C.A.; Harasim, E.; Feledyn-Szewczyk, B.; Antonkiewicz, J. Enzymatic Activity of Loess Soil in Organic and Conventional Farming Systems. Agriculture 2020, 10, 135. [CrossRef]
- Kwiatkowski, C.A.; Harasim, E. Chemical Properties of Soil in Four-Field Crop Rotations under Organic and Conventional Farming Systems. Agronomy 2020, 10, 1045. [CrossRef]
- Wesołowska, S.; Futa, B.; Myszura, M.; Kobyłka, A. Residual Effects of Different Cropping Systems on Physicochemical Properties and the Activity of Phosphatases of Soil. Agriculture 2022, 12, 693. [CrossRef]
- Al-Busaidi, W.; Janke, R.; Menezes-Blackburn, D.; Khan M.M. Impact of long-term agricultural farming on soil and water chemical properties: A case study from Batinah regions (Oman). Journal of the Saudi Society of Agricultural Sciences 2022, 21, 397–403. [CrossRef]
- Marinari, S.; Mancinelli, R.; Campiglia, E.; Grego, S. Chemical and biological indicators of soil quality in organic and conventional farming systems in Central Italy. Ecol. Indic. 2006, 6, 701–711. [CrossRef]
- Bhanuvally, M.; Sunitha N. H.; Sharanabasava; Ravi S.; Mahadevaswamy. Effect of Organic Farming Practices on Soil Chemical Properties. Int. J. Environ. Clim. Change. 2024, 14, 470-481. [CrossRef]
- Dhaliwal, S.S,; Naresh, R.K.; Mandal, A,; Singh, R,; Dhaliwal, M.K. Dynamics and transformations of micronutrients in agricultural soils as influenced by organic matter build-up: A review. Environmental and Sustainability Indicators 2019, 1-2, 100007. [CrossRef]
- Wang, H.; Huo, Q.; Wang, T.; Lv, G.; Li, W.; Ren, J.; Zhang, S.; Li, J. Effects of Combination of Water-Retaining Agent and Nitrogen Fertilizer on Soil Characteristics and Growth of Winter Wheat under Subsoiling Tillage in South Loess Plateau of China. Agronomy 2024, 14, 1287. [CrossRef]
- D’Odorico, P.; Chiarelli, D.D.; Rosa, L.; Bini, A.; Zilberman, D.; Rulli, M.C. The Global Value of Water in Agriculture. Proc. Natl. Acad. Sci. USA 2020, 117, 21985–21993. [CrossRef]
- Slaboch, J.; Malý, M. Land Valuation Systems in Relation to Water Retention. Agronomy 2023, 13, 2978. [CrossRef]
- Bondarovich, A.; Illiger, P.; Schmidt, G.; Ponkina, E.; Nugumanova, A.; Maulit, A.; Sutula, M. Effects of Agricultural Cropping Systems on Soil Water Capacity: The Case in Cross-Border Altai. Span. J. Soil Sci. 2023, 13, 11493. [CrossRef]
- Leogrande, R.; Pedrero, F.; Nicolas, E.; Vitti, C.; Lacolla, G.; Stellacci, A.M. Reclaimed Water Use in Agriculture: Effects on Soil Chemical and Biological Properties in a Long-Term Irrigated Citrus Farm. Agronomy 2022, 12, 1317. [CrossRef]
- Woldeyohannis, Y.S.; Hiremath, S.S.; Tola, S.; Wako, A. Influence of soil physical and chemical characteristics on soil compaction in farm field. Heliyon 2024, 10, 3, e25140. [CrossRef]
- Gajda, A.M.; Czyż, E.A.; Dexter, A.R. Effects of long-term use of different farming systems on some physical, chemical and microbiological parameters of soil quality. Int. Agrophys., 2016, 30, 165-172. [CrossRef]
- Sainju, U.M.; Liptzin, D.; Jabro, J.D. Relating soil physical properties to other soil properties and crop yields. Sci. Rep. 2022, 12, 22025. [CrossRef]
- de Cima, D.S.; Luik, A.; Reintam, E. Organic farming andcover crops as an alternative to mineral fertilizers to improvesoil physical properties. Int. Agroph. 2015, 29, 405–412. [CrossRef]
- Williams, D. M., Blanco- Canqui, H., Francis, C. A., Galusha, T. D. Organic farming and soil physical properties: An assess-ment after 40 years. Agronomy Journal 2017, 109, 600–609.
- Blanco-Canqui, H., Ruis, S.J., Francis, C.A. Do organic farming practices improve soil physical properties? Soil Use and Management 2024, 40, e12999. [CrossRef]
- Hu, W.; Shao, M.A.; Si, B.C. Seasonal changes in surface bulk density and saturated hydraulic conductivity of natural landscapes. Eur. J. Soil Sci. 2012, 63, 820-830. [CrossRef]
- Papadopoulos, A.; Bird, N.R.A.; Whitmore, A.P.; Mooney, S.J. Does organic management lead to enhanced soil physi-cal quality? Geoderma 2014, 213, 435–443. [CrossRef]
- Minasny, B.; McBratney, A.B. Limited effect of organicmatter on soil available water capacity. European Journal of Soil Science 2018, 69, 39–47. [CrossRef]
- Bagnall, D.K.; Morgan, C.L.S.; Cope, M.; Bean, G.M.; Cappellazzi, S.; Greub, K.; Liptzin, D.; Norris, C.L.; Rieke, E.; Tracy, P.; Aberle, E.; Ashworth, A.; Bañuelos Tavarez, O.; Bary, A.; Baumhardt, R. L.; Borbón Gracia, A.; Brainard, D.; Brennan, J.; Briones Reyes, D.; … Honeycutt, C.W. Carbon-sensitive pedotransfer functions for plant available water. Soil Science Society of America Journal 2022, 86, 612–629. [CrossRef]
- Furtak, K.; Gałązka, A. Effect of organic farming on soil microbiological parameters. Polish Journal Of Soil Science 2019, LII/2.
- Liu, L.; Kong, J.; Cui, H.; Zhang, J.; Wang, F.; Cai, Z.; Huang, X. Relationships of decomposability and C/N ratio in different types of organic matter with suppression of Fusarium oxysporum and microbial communities during reductive soil disinfestation. Biol. Control 2016, 101, 103–113. [CrossRef]
- Nannipieri, P.; Ascher, J.; Ceccherini, M.T.; Landi, L.; Pietramellara, G.; Renella, G. Microbial diversity and soil functions. Eur. J. Soil Sci. 2003, 54, 655–670. [CrossRef]
- Gianfreda, L.; Rao, A.M.; Piotrowska, A.; Palumbo, G.; Colombo, C. Soil enzyme activities as affected by anthropogenic alterations: Intensive agricultural practices and organic pollution. Sci. Total Environ. 2005, 341, 265–279. [CrossRef]
- Bielińska, E.J.; Pranagal, J. Enzymatic activity of soil contaminated with triazine herbicides. Pol. J. Environ. Stud. 2007, 16, 295–300. https://www.pjoes.com/pdf-87989-21848?filename=21848.pdf.
- Tian, Y.; Zhang, X.; Liu, J.; Chen, Q.; Gao, L. Microbial properties of rhizosphere soils as affected by rotation, grafting, and soil sterilization in intensive vegetable production systems. Sci. Hortic. 2009, 123, 139–147. [CrossRef]
- Niewiadomska, A.; Sulewska, H.; Wolna-Maruwka, A.; Klama, J. Effect of organic fertilization on development of proteolytic bacteria and activity of proteases in the soil for cultivation of maize (Zea mays L.). Arch. Environ. Prot. 2010, 36, 47–56. https://www.researchgate.net/publication/289068590_Effect_of_organic_fertilization_on_development_of_proteolytic_bacteria_and_activity_of_proteases_in_the_soil_for_cultivation_of_maize_ZEA_MAYS_L.
- Wallenstein, M.D.; Haddix, M.L.; Lee, D.D.; Conant, R.T.; Paul, E.A. A litter-slurry technique elucidates the key role of enzyme production and microbial dynamics in temperature sensitivity of organic matter decomposition. Soil Biol. Biochem. 2012, 47, 18–26. 10.1016/j.soilbio.2011.12.009.
- Brzostek, E.R.; Finzi, A.C. Seasonal variation in the temperature sensitivity of proteolytic enzyme activity in temperate forest soils. J. Geophys. Res. 2012, 117, G01018. [CrossRef]
| Specification | Organic system | Integrated system | Conventional system |
|---|---|---|---|
| Organic C (%) | 0.95-0.97 | 0.94-0.96 | 0.95-0.96 |
| Total N (%) | 0.08-0.09 | 0.08-0.09 | 0.08-0.09 |
| P (mg kg−1) | 128.2-129.3 | 127.4-129.1 | 127.5-128.8 |
| K (mg kg−1) | 215.4-217.6 | 217.5-218.1 | 216.7-218.5 |
| Mg (mg kg−1) | 68.8-69.2 | 68.7-69.1 | 68.6-68.9 |
| Soil pH (1M KCl) | 6.5 | 6.5 | 6.5 |
| Farming system | Wheat irrigation |
Total N (%) |
P (mg kg-1) |
K (mg kg-1) |
Mg (mg kg-1) |
C-organic (%) |
| Organic | NI | 0.06 ±0.004 |
121.5 ±0.9 |
201.8 ±1.0 |
63.5 ±0.4 |
0.80 ±0.013 |
| 2I | 0.07 ±0.002 |
121.7 ±1.0 |
203.2 ±1.1 |
70.1 ±0.4 |
0.87 ±0.023 |
|
| MI | 0.09 ±0.002 |
122.2 ±1.1 |
209.3 ±1.3 |
71.3 ±0.6 |
0.95 ±0.033 |
|
| Mean | 0.07 | 121.8 | 204.8 | 68.3 | 0.87 | |
| Integrated | NI | 0.07 ±0.001 |
124.4 ±1.2 |
212.2 ±1.4 |
56.8 ±0.3 |
0.83 ±0.031 |
| 2I | 0.09 ±0.002 |
125.6 ±0.8 |
216.3 ±1.4 |
65.7 ±0.4 |
0.98 ±0.02 |
|
| MI | 0.10 ±0.002 |
126.0 ±0.9 |
223.1 ±1.5 |
71.0 ±0.5 |
1.11 ±0.036 |
|
| Mean | 0.09 | 125.3 | 217.2 | 64.5 | 0.97 | |
| Conventional | NI | 0.08 ±0.003 |
127.1 ±1.2 |
244.3 ±1.6 |
52.2 ±0.5 |
0.77 ±0.014 |
| 2I | 0.11 ±0.005 |
128.3 ±1.4 |
258.9 ±1.7 |
60.3 ±0.6 |
0.80 ±0.022 |
|
| MI | 0.15 ±0.006 |
131.4 ±1.3 |
269.6 ±1.9 |
70.4 ±0.7 |
0.91 ±0.037 |
|
| Mean | 0.11 | 128.9 | 257.6 | 61.0 | 0.83 | |
| HSD (p≥0.05) for farming system (A) | 0.016 | 7.06 | 12.11 | 3.67 | 0.095 | |
| HSD (p≥0.05) for wheat irrigation (B) | 0.017 | n.s. | 14.38 | 3.79 | 0.098 | |
| HSD (p≥0.05) for (A × B) interaction | 0.023 | n.s. | 19.37 | 4.53 | 0.124 | |
| Farming system | Wheat irrigation |
B (mg kg−1) |
Cu (mg kg−1) |
Mn (mg kg−1) |
Zn (mg kg−1) |
Total sorption capacity of soil (cmol (+) kg−1) |
| Organic | NI | 2.36 ±0.04 |
6.86 ±0.08 |
201 ±2.7 |
8.44 ±0.08 |
33.5 ±0.6 |
| 2I | 2.40 ±0.03 |
6.95 ±0.10 |
211 ±3.5 |
8.62 ±0.09 |
35.7 ±0.8 |
|
| MI | 2.56 ±0.05 |
7.27 ±0.11 |
218 ±4.2 |
8.91 ±0.08 |
36.9 ±1.0 |
|
| Mean | 2.44 | 7.03 | 210 | 8.66 | 35.3 | |
| Integrated | NI | 2.30 ±0.04 |
6.64 ±0.08 |
184 ±2.5 |
8.14 ±0.04 |
33.4 ±0.9 |
| 2I | 2.33 ±0.04 |
6.72 ±0.09 |
188 ±2.2 |
8.26 ±0.05 |
38.0 ±1.1 |
|
| MI | 2.38 ±0.05 |
6.79 ±0.07 |
193 ±3.0 |
8.40 ±0.06 |
42.0 ±1.1 |
|
| Mean | 2.34 | 6.72 | 188 | 8.27 | 37.8 | |
| Conventional | NI | 2.09 ±0.02 |
6.41 ±0.06 |
168 ±2.1 |
8.01 ±0.05 |
34.3 ±0.8 |
| 2I | 2.11 ±0.03 |
6.47 ±0.07 |
171 ±2.2 |
8.09 ±0.06 |
35.6 ±0.7 |
|
| MI | 2.16 ±0.03 |
6.54 ±0.08 |
177 ±2.4 |
8.11 ±0.07 |
39.3 ±1.2 |
|
| Mean | 2.12 | 6.47 | 172 | 8.07 | 36.4 | |
| HSD (p≥0.05) for farming system (A) | 0.199 | 0.515 | 14.4 | 0.563 | 2.46 | |
| HSD (p≥0.05) for wheat irrigation (B) | n.s. | n.s. | 8.9 | 0.461 | 2.17 | |
| HSD (p≥0.05) for interaction (A × B) | 0.154 | n.s. | n.s. | n.s. | 2.59 | |
| Farming system | Wheat irrigation |
Soil moisture content (%) | Total soil porosity (%) in the 0-25 cm layer | Capillary soil porosity (%) in the 0-25 cm layer | |
| 0-20 cm | 20-35 cm | ||||
| Organic | NI | 5.62 ±0.016 |
5.32 ±0.014 |
42.2 ±1.06 |
34.0 ±0.62 |
| 2I | 14.87 ±0.028 |
16.21 ±0.030 |
41.8 ±1.04 |
33.8 ±0.58 |
|
| MI | 15.56 ±0.034 |
19.32 ±0.039 |
41.1 ±1.01 |
33.0 ±0.54 |
|
| Mean | 12.01 | 13.61 | 41.7 | 33.6 | |
| Integrated | NI | 5.43 ±0.018 |
5.15 ±0.015 |
40.6 ±0.94 |
31.3 ±0.49 |
| 2I | 14.65 ±0.037 |
16.05 ±0.039 |
39.7 ±0.97 |
30.7 ±0.47 |
|
| MI | 15.17 ±0.041 |
18.81 ±0.055 |
38.7 ±1.02 |
30.4 ±0.38 |
|
| Mean | 11.75 | 13.33 | 39.7 | 30.8 | |
| Conventional | NI | 5.24 ±0.028 |
5.08 ±0.019 |
38.2 ±1.09 |
30.9 ±0.40 |
| 2I | 14.10 ±0.033 |
15.90 ±0.038 |
37.5 ±1.11 |
30.6 ±0.35 |
|
| MI | 14.98 ±0.041 |
17.79 ±0.052 |
36.5 ±1.10 |
30.0 ±0.29 |
|
| Mean | 11.44 | 12.92 | 37.4 | 30.5 | |
| HSD (p≥0.05) for farming system (A) | n.s. | 0.685 | 2.28 | 1.86 | |
| HSD (p≥0.05) for wheat irrigation (B) | 0.865 | 0.987 | n.s. | n.s. | |
| HSD (p≥0.05) for interaction (A × B) | n.s. | n.s. | n.s. | n.s. | |
| Farming system | Wheat irrigation |
Soil density (g cm-3) in the 0-25 cm layer | Soil compaction (MPa) in the 0-25 cm layer |
| Organic | NI | 1.41 ±0.014 | 1.51 ±0.017 |
| 2I | 1.58 ±0.018 | 1.67 ±0.022 | |
| MI | 1.64 ±0.026 | 1.97 ±0.032 | |
| Mean | 1.54 | 1.72 | |
| Integrated | NI | 1.46 ±0.013 | 1.54 ±0.019 |
| 2I | 1.54 ±0.022 | 1.75 ±0.025 | |
| MI | 1.65 ±0.024 | 1.95 ±0.027 | |
| Mean | 1.55 | 1.75 | |
| Conventional | NI | 1.51 ±0.016 | 1.59 ±0.019 |
| 2I | 1.61 ±0.019 | 1.88 ±0.032 | |
| MI | 1.65 ±0.021 | 2.09 ±0.034 | |
| Mean | 1.59 | 1.85 | |
| HSD (p≥0.05) for farming system (A) | n.s. | 0.096 | |
| HSD (p≥0.05) for wheat irrigation (B) | 0.095 | 0.142 | |
| HSD (p≥0.05) for interaction (A × B) | n.s. | 0.104 | |
| Farming system | Wheat irrigation |
Dehydrogenase (mg TPF kg−1 d.m.) | Acid phosphatase (mg PNP kg−1 d.m.) | Alkaline phosphatase (mg PNP kg−1 d.m.) | Urease (mg N-NH4 kg−1 d.m.) | Protease (mg tyrosine kg−1 d.m.) |
| Organic | NI | 2.07 ±0.029 | 61.07 ±1.63 | 73.64 ±2.19 | 35.32 ±1.17 | 12.14 ±0.08 |
| 2I | 2.49 ±0.039 | 69.03 ±1.66 | 75.85 ±2.24 | 41.03 ±1.45 | 14.80 ±0.07 | |
| MI | 2.60 ±0.052 | 69.72 ±1.72 | 78.05 ±2.34 | 44.00 ±1.52 | 13.40 ±0.06 | |
| Mean | 2.42 | 66.61 | 75.85 | 40.12 | 13.44 | |
| Integrated | NI | 2.62 ±0.038 | 64.63 ±1.83 | 82.88 ±2.19 | 56.00 ±1.73 | 16.47 ±0.09 |
| 2I | 2.87 ±0.027 | 71.44 ±1.88 | 84.10 ±2.27 | 63.93 ±1.81 | 19.64 ±0.16 | |
| MI | 3.25 ±0.045 | 75.52 ±1.91 | 85.10 ±2.32 | 66.69 ±1.87 | 17.42 ±0.12 | |
| Mean | 2.91 | 70.53 | 84.03 | 62.20 | 17.84 | |
| Conventional | NI | 1.71 ±0.026 | 55.18 ±1.71 | 66.30 ±1.99 | 24.74 ±1.08 | 8.63 ±0.06 |
| 2I | 2.28 ±0.041 | 59.63 ±1.75 | 67.77 ±2.08 | 36.73 ±1.12 | 10.74 ±0.08 | |
| MI | 2.63 ±0.047 | 59.72 ±1.78 | 68.69 ±2.11 | 31.72 ±1.09 | 9.23 ±0.07 | |
| Mean | 2.21 | 58.18 | 67.59 | 31.06 | 9.53 | |
| HSD (p≥0.05) for farming system (A) | 0.207 | 3.901 | 4.453 | 6.021 | 2.146 | |
| HSD (p≥0.05) for wheat irrigation (B) | 0.241 | 4.024 | 4.391 | 5.442 | 0.944 | |
| HSD (p≥0.05) for interaction (A × B) | 0.371 | 4.045 | n.s. | 5.981 | 2.189 | |
| Farming system | Wheat irrigation |
Count of beneficial fungi (Trichoderma ssp.) in 1 g of soil from 0-25 cm layer | Count of pathogenic fungi (Fusarium ssp.) in 1 g of soil from 0-25 cm layer | Count of actinobacteria in 1 g of soil from 0-25 cm layer |
| Organic | NI | 17,142 ±89 | 10,017 ±52 | 47,495 ±121 |
| 2I | 19,234 ±94 | 9,162 ±49 | 48,377 ±129 | |
| MI | 20,144 ±99 | 9,058 ±38 | 50,289 ±135 | |
| Mean | 18,840 | 9,412 | 48,720 | |
| Integrated | NI | 16,393 ±84 | 11,237 ±59 | 38,165 ±104 |
| 2I | 18,344 ±91 | 10,350 ±51 | 38,790 ±108 | |
| MI | 19,424 ±78 | 10,152 ±55 | 39,254 ±112 | |
| Mean | 18,054 | 10,580 | 38,736 | |
| Conventional | NI | 14,205 ±69 | 12,071 ±62 | 29,615 ±86 |
| 2I | 15,368 ±75 | 11,710 ±58 | 31,316 ±92 | |
| MI | 16,337 ±81 | 10,986 ±54 | 33,452 ±97 | |
| Mean | 15,303 | 11,589 | 31,461 | |
| HSD (p≥0.05) for farming system (A) | 975.4 | 710.6 | 1,712.4 | |
| HSD (p≥0.05) for wheat irrigation (B) | 961.5 | 709.4 | 1,653.3 | |
| HSD (p≥0.05) for interaction (A × B) | 1,144.2 | n.s. | 1,699.2 | |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
