Submitted:
11 November 2023
Posted:
13 November 2023
You are already at the latest version
Abstract
Keywords:
1. Introduction
2. Materials and Methods
2.1. Study Site Description
2.2. Study Design
2.3. Data Collection
- ▪ More males, n=3
- ▪ More females, n=5
- ▪ Youth (less than 35 years old) dominating, n=3
- ▪ Equitable representations, n=5
2.4. Data Analysis
2.5. Anonymity and Confidentiality
3. Results
3.1. Demographic Information of Smallholder Farmers in the Two Study Sites
3.2. Focus Group Discussions
3.2.1. Identification of Spodoptera frugiperda Life Stages by Smallholder Farmers
3.2.2. Spodoptera frugiperda Management Practices by Smallholder Farmers
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
- Which crops and cultivars do you cultivate?
- Have you seen the following stages of this insect on your crops?
- 3.
- What do you call these insect pests?
- 4.
- What do you do when you see these insect pests?
- 5.
- Who gives you advice on the control strategy that you have selected to control these insect pests?
- 6.
- When do you apply that control strategy?
- 7.
- If you apply the control strategy, do you see any changes on the numbers of the insect pests?
- 8.
- If you observe any changes after control, how long do you observe those changes?
- 9.
- Do you think this insect pest affects your yield? Please elaborate
References
- Santpoort, R. The drivers of maize area expansion in Sub-Saharan Africa. How policies to boost maize production overlook the interest of smallholder farmers. Land 2020, 9, 68. [Google Scholar] [CrossRef]
- (FAOSTAT) Food and Agriculture Organization of the United Nations. 2021. Available online: http://www.fao.org/faostat/en/#data/QC (accessed on 25 August 2022).
- Ekpa, O.; Palacios-Rojas, N.; Kruseman, G.; Fogliano, V.; Linnemann, A.R. Sub-Saharan African maize-based foods-processing practices, challenges and opportunities. Food Rev. Int. 2019, 35, 609–639. [Google Scholar] [CrossRef]
- Salika, R.; Riffat, J. Abiotic stress responses in maize: A review. Acta Physiol. Plant. 2021, 43, 130. [Google Scholar] [CrossRef]
- Chimonyo, V.G.P.; Mutengwa, C.S.; Chiduza, C.; Tandzi, L.N. Characteristics of maize growing farmers, varietal use and constraints to increase productivity in selected villages in the Eastern Cape province of South Africa. S. Afr. J. Agric. Ext. 2020, 48, 64–82. [Google Scholar] [CrossRef]
- Parker, C. Parasitic weeds: A world challenge. Weed Sci. 2012, 60, 269–276. [Google Scholar] [CrossRef]
- Hardwick, K.M.; Ojwang, A.M.E.; Stomeo, F.; Maina, S.; Bichang’a, G.; Calatayud, P.A.; Filée, J.; Djikeng, A.; Miller, C.; Cepko, L.; Darby, N.C. Draft genome of Busseola fusca, the maize stalk borer, a major crop pest in Sub-Saharan Africa. Genome Biol. Evol. 2019, 11, 2203–2207. [Google Scholar] [CrossRef] [PubMed]
- Matova, P.M.; Kamutando, C.N.; Magorokosho, C.; Kutywayo, D.; Gutsa, F.; Labuschagne, M. Fall-armyworm invasion, control practices an; resistance breeding in Sub-Saharan Africa. Crop Sci. 2020, 60, 2951–2970. [Google Scholar] [CrossRef] [PubMed]
- Sparks, A.A. A review of the biology of the fall armyworm. Fla. Entomol. 1979, 62, 82–87. [Google Scholar] [CrossRef]
- FAO) Food and Agriculture Organization. Briefing note on FAO actions on fall armyworm in Africa: 5 March 2019. Available online: http://www.fao.org/3/a-bs183e.pdf (accessed on 22 August 2022).
- Montezano, D. G.; Specht, A.; Sosa-Gómez, A.; Roque-Specht, D. R.; Sousa-Silva, V. F.; Paula-Moraes, J. C.; Peterson, S. V.; Hunt, T. E. Host plants of Spodoptera frugiperda (Lepidoptera: Noctuidae) in the Americas. Afr. Entomol. 2018, 26, 286–300. [Google Scholar] [CrossRef]
- Day, R.; Abrahams, P.; Bateman, M.; Beale, T.; Clottey, V.; Cock, M.; Colmenarez, Y.; Corniani, N.; Early, R.; Godwin, J.; Gomez, J. Fall armyworm: Impacts and implications for Africa. Outlooks Pest Manag. 2017, 28, 196–201. [Google Scholar] [CrossRef]
- Pannuti, L.E.R.; Baldin, E.L.L.; Hunt, T.E.; Paula-Moraes, S.V. On-plant larval movement and feeding behaviour of fall armyworm (Lepidoptera: Noctuidae) on reproductive corn stages. Environ. Entomol. 2015, 45, 192–200. [Google Scholar] [CrossRef] [PubMed]
- Eschen, R.; Beale, T.; Bonnin, J.M.; Constantine, K.L.; Duah, S.; Finch, E.A.; Makale, F.; Nunda, W.; Ogunmodede, A.; Pratt, C.F; Thompson, E. Towards estimating the economic cost of invasive alien species to African crop and livestock production. CABI Agric. Biosci. 2021, 2, 1–18. [Google Scholar] [CrossRef]
- Bannor, R.K.; Oppong-Kyeremeh, H.; Aguah, D.A.; Kyire, S.K.C. An analysis of the effect of fall armyworm on the food security status of maize-producing households in Ghana. Int. J. Soc. Econ. 2022, 49, 562–580. [Google Scholar] [CrossRef]
- Houngbo, S.; Zannou, A.; Aoudji, A.; Sossou, H.C.; Sinzogan, A.; Sikirou, R.; Zossou, E.; Vodounon, H.S.T.; Adomou, A.; Ahanchédé, A. Farmers’ knowledge and management practices of fall armyworm, Spodoptera frugiperda (JE Smith) in Benin, West Africa. Agriculture 2020, 10, 430. [Google Scholar] [CrossRef]
- Wyckhuys, K.A.; Bentley, J.W.; Lie, R.; Nghiem, L.T.P.; Fredrix, M. Maximizing farm-level uptake and diffusion of biological control innovations in today’s digital era. BioControl 2017, 63, 133–148. [Google Scholar] [CrossRef]
- Mushunje, A.; Muchaonyerwa, P.; Mandikiana, B.W.; Taruvinga, A. Smallholder farmers’ perceptions on Bt maize and their relative influence towards its adoption: The case of Mqanduli communal area, South Africa. Afr. J. Agric. Res. 2011, 6, 5918–5923. [Google Scholar] [CrossRef]
- Kumela, T.; Simiyu, J.; Sisay, B.; Likhayo, P.; Mendesil, E.; Gohole, L.; Tefera, T. Farmers’ knowledge, perceptions, and management practices of the new invasive pest, fall armyworm (Spodoptera frugiperda) in Ethiopia and Kenya. Int. J. Pest Manag. 2019, 65, 1–9. [Google Scholar] [CrossRef]
- Murray, K.; Jepson, P.C.; and Chaola, M. Fall armyworm management by maize smallholders in Malawi: An integrated pest management strategic plan. 2019. Mexico, CDMX, CMMYT. Available online: https://catalog.extension.oregonstate. Edu/em9238/html (accessed on 10 March 2022).
- Caniço, A.; Mexia, A.; Santos, L. Farmers’ knowledge, perception and management practices of fall armyworm (Spodoptera frugiperda Smith) in Manica province, Mozambique. NeoBiota 2021, 68, 127–143. [Google Scholar] [CrossRef]
- Baudron, F.; Zaman-Allah, M. A.; Chaipa, I.; Chari, N.; Chinwada, P. Understanding the factors influencing fall armyworm (Spodoptera frugiperda J.E. Smith) damage in African smallholder maize fields and quantifying its impact on yield. A case study in eastern Zimbabwe. Crop Prot. 2019, 120, 141–150. [Google Scholar] [CrossRef]
- Asare-Nuamah, P. Smallholder farmers’ adaptation strategies for the management of fall armyworm (Spodoptera frugiperda) in rural Ghana. Int. J. Pest Manag. 2022, 68, 8–18. [Google Scholar] [CrossRef]
- Kansiime, M.K.; Mugambi, I.; Rwomushana, I.; Nunda, W.; Lamontagne-Godwin, J.; Rware, H.; Phiri, N.A.; Chipabika, G.; Ndlovu, M. Day, R. Farmer perception of fall armyworm (Spodoptera frugiderda JE Smith) and farm-level practices in Zambia. Pest Manag. Sci. 2019, 75, 2840–2850. [Google Scholar] [CrossRef]
- Aspers, P.; Corte, U. What is qualitative in qualitative research. Qual. Sociol. 2019, 42, 139–160. [Google Scholar] [CrossRef] [PubMed]
- Parker, A.; Tritter, J. Focus group method and methodology: Current practice and recent debate. Int. J. Res. Method Educ. 2006, 29, 23–37. [Google Scholar] [CrossRef]
- Braun, V.; Clarke, V. Using thematic analysis in psychology. Qual. Res. Psychol. 2006, 3, 77–101. [Google Scholar] [CrossRef]
- Kalyebi, A.; Otim, M.H.; Walsh, T.; Tay, W.T. Farmer perception of impacts of fall armyworm (Spodoptera frugiperda JE Smith) and transferability of its management practices in Uganda. CABI agric. Biosci. 2023, 4, 1–14. [Google Scholar] [CrossRef]
- Gebreziher, H.G. Review on management methods of fall armyworm (Spodoptera frugiperda JE Smith) in Sub-Saharan Africa. Int. J. Entomol. Res. 2020, 5, 9–14. [Google Scholar]
- Saveer, A.M.; Hatano, E.; Wada-Katsumata, A.; Meagher, R.L; Schal, C. Nonanal, a new fall armyworm sex pheromone component, significantly increases the efficacy of pheromone lures. Pest Manag. Sci. 2023, 79, 2831–2839. [Google Scholar] [CrossRef] [PubMed]
- Abtew, A.; Niassy, S.; Affognon, H.; Subramanian, S.; Kreiter, S.; Garzia, G.T.; Martin, T. Farmers' knowledge and perception of grain legume pests and their management in the Eastern province of Kenya. Crop Prot. 2016, 87, 90–97. [Google Scholar] [CrossRef]
- Midega, C.A.; Nyang'au, I.M.; Pittchar, J.; Birkett, M.A.; Pickett, J.A.; Borges, M. Khan, Z.R. Farmers' perceptions of cotton pests and their management in western Kenya. Crop Prot. 2012, 42, 193–201. [Google Scholar] [CrossRef]
- Kasoma, C.; Shimelis, H.; Laing, M.D. Fall armyworm invasion in Africa: Implications for maize production and breeding. J. Crop Improv. 2021, 35, 111–146. [Google Scholar] [CrossRef]
- Akeme, C.N.; Ngosong, C.; Sumbele, S.A.; Aslan, A.; Tening, A.S.; Krah, C.Y.; Kamanga, B.M.; Denih, A.; Nambangia, O.J. November. Different controlling methods of fall armyworm (Spodoptera frugiperda) in maize farms of small-scale producers in Cameroon. In IOP Conference Series: Earth and Environmental Science, 2021, 911: 012053. IOP Publishing.
- (FAO; CABI) Food and Agriculture Organization (FAO) and Centre for Agriculture and Bioscience International (CABI). Community based fall armyworm (Spodoptera frugiperda) monitoring, early warning and management training of trainers manual. 2019, First Edition. 112 pp. Licence: CC BY-NC-SA 3.0 IGO.
- Makale, F.; Mugambi, I.; Kansiime, M.K.; Yuka, I.; Abang, M.; Lechina, B.S.; Rampeba, M.; Rwomushana, I. Fall armyworm in Botswana: Impacts, farmer management practices and implications for sustainable pest management. Pest Manag. Sci. 2022, 78, 1060–1070. [Google Scholar] [CrossRef]
- (DAFF) Departmen of Agricultue, Forestry and Fisheries. Guideline for registered agrochemicals to control Fall armyworm in South Africa. 2017. Available online: http://www.daff.gov.za/ (accessed on 15th July 2020).
- Rukundo, P.; Karangwa, P.; Uzayisenga, B.; Ingabire, J.P.; Waweru, B.W.; Kajuga, J.; Bizimana, J.P. Outbreak of fall armyworm (Spodoptera frugiperda) and its impact in Rwanda agriculture production. In Sustainable management of invasive pests in Africa, eds S. Niassy, S. Ekesi, L., Migiro and W. Otieno (Cham: Springer International Publishing), 2020; 139-157.
- U.S. Environmental Protection Agency (U.S. EPA). Interim Registration Eligibility Decisio (RED) Methamidophos. Case No. 0043. April 7, 2002. Available online: https://www.epa.gove/oppsrrd1/REDs/methamidophos red.pdf iconexternal icon. 4/4/13 (accessed on 10 August 2023).
- Chimweta, M.; Nyakudya, I.W;, Jimu, L.; Bray Mashingaidze, A. Fall armyworm [Spodoptera frugiperda (JE Smith)] damage in maize: Management options for flood-recession cropping smallholder farmers. Int. J. Pest Manag. 2020, 66, 142–154. [CrossRef]
- Makgoba, M.C.; Tshikhudo, P.P.; Nnzeru, L.R.; Makhado, R.A. Impact of fall armyworm (Spodoptera frugiperda) (JE Smith) on small-scale maize farmers and its control strategies in the Limpopo province, South Africa. Jamba-J. Disaster Risk Stud. 2021, 13, 1016. [Google Scholar] [CrossRef]
- Yang, X.; Wyckhuys, K.A.; Jia, X.; Nie, F.; Wu, K. Fall armyworm invasion heightens pesticide expenditure among Chinese smallholder farmers. J. Environ. Manage. 2021, 282, 111949. [Google Scholar] [CrossRef] [PubMed]
- Prasanna, B. M., J. E; Huesing, V. Eddy, V. M.; Peschke (eds). 2018. Fall armyworm in Africa: A guide for integrated pest management. First Edition. CIMMYT, Mexico City.
- Gutiérrez-Moreno, R.; Mota-Sanchez, D.; Blanco, C.A.; Whalon, M.E.; Terán-Santofimio, H.; Rodriguez-Maciel, J.C.; DiFonzo, C. Field-evolved resistance of the fall armyworm (Lepidoptera: Noctuidae) to synthetic insecticides in Puerto Rico and Mexico. Econ. Entomol. 2019, 112, 792–802. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Liu, B.; Zheng, W.; Liu, C.; Zhang, D.; Zhao, S.; Li, Z.; Xu, P.; Wilson, K.; Withers, A. Jones, C.M. Genetic structure and insecticide resistance characteristics of fall armyworm populations invading China. Mol. Ecol. Resour. 2020, 20, 1682–1696. [Google Scholar] [CrossRef] [PubMed]
- Kogan, M. Integrated pest management: Historical perspectives and contemporary developments. Annu. Rev. Entomol. 1998, 43, 243–270. [Google Scholar] [CrossRef] [PubMed]
- Isaac, G. K.; Ansah, F.T.; Bright K. D. Tetteh. Farmers’ control strategies against fall armyworm and determinants of implementation in two districts of the Upper West Region of Ghana, Int. J. Pest Manag. 2021, 1-15. [CrossRef]
- Abate, T.; van Huis, A; Ampofo, J.K.O. Pest management strategies in traditional agriculture: An African perspective. Annu. Rev. Entomol. 2000, 45, 631–659.
- Kotey, D.A.; Assefa, Y.; Van den Berg, J. Enhancing smallholder farmers’ awareness of GM maize technology, management practices and compliance to stewardship requirements in the Eastern Cape Province of South Africa: The role of public extension and advisory services. S. Afr. J. Agric. Ext. 2017, 45, 49–63. [Google Scholar] [CrossRef]
- Keetch, D.P.; Ngqaka, A.; Akanbi, R.; Mahlanga, P. Bt maize for small scale farmers: A case study. Afr.J. Biotechnol. 2005, 4, 1505–1509. [Google Scholar] [CrossRef]
- Kruger, M.; Van Rensburg, J.B.J.; Van den Berg, J. Transgenic Bt maize: farmers’ perceptions, refuge compliance and reports of stem borer resistance in South Africa. J. Appl. Entomol. 2012, 13, 38–50. [Google Scholar] [CrossRef]
- Kruger, M.; Van Rensburg, J.B.J.; Van den Berg, J. Perspective on the development of stem borer resistance to Bt maize and refuge compliance at the Vaalharts irrigation scheme in South Africa. Crop Prot. 2009, 28, 684–689. [Google Scholar] [CrossRef]
- Reisig, D.D. Factors associated with willingness to plant non-Bt maize refuge and suggestions for increasing refuge compliance. J. Integr. Pest Manag. 2017, 8, 1–10. [Google Scholar] [CrossRef]
| Age Group | Educational Level | Years of Farming Experience. | % of all Respondents |
|---|---|---|---|
| All Respondents (n=118) | |||
|
Less than 36 years (n=24) Males=17, Females=7 |
No schooling (n=0) Males=0, Females=0 |
0 | |
|
Primary education (n=0) Males=0, Females=0 |
0 | ||
|
Secondary education (n=13) Males=9, Females=4 |
Less than 11 years (n=12) Males=9, Females=3 |
10 | |
|
11 to 20 years (n=1) Males=0, Females=1 |
1 | ||
|
Tertiary education (n=11) Males=8, Females=3 |
Less than 11 years (n=11) Males=8, Females=3 |
9 | |
| 11 to 20 years (n=0) | 0 | ||
|
36 to 60 years (n=47) Males=16, Females=31 |
No schooling (n=0) | 0 | |
|
Primary education (n=8) Males=2, Females=6 |
Less than 11 years (n=2) Males=1, Females=1 |
2 | |
|
11 to 20 years (n=1) Males=0, Females=1 |
1 | ||
|
21 to 30 years (n=5) Males=1, Females=4 |
4 | ||
|
Secondary education (n=36) Males=12, Females=24 |
Less than 11 years (n=4) Males=0, Females=4 |
3 | |
|
11 to 20 years (n=18) Males=7, Females=11 |
15 | ||
|
21 to 30 years (n=14) Males=5, Females=9 |
12 | ||
|
Tertiary education (n=3) Males=2, Females=1 |
Less than 11 years (n=1) Males=0, Females=1 |
1 | |
|
11 to 20 years (n=1) Males=1, Females=0 |
1 | ||
|
21 to 30 years (n=1) Males=1, Females=0 |
1 | ||
|
More than 60 years (n=47) Males=19, Females= 28 |
No schooling (n=29) Male=6, Females=23 |
Less than 11 years (n=1) Males=0, Females=1 |
1 |
|
11 to 20 years (n=1) Males=1, Females=0 |
1 | ||
|
21 to 30 years (n=27) Males=5 Females=22 |
23 | ||
|
Primary education (n=9) Males=5, Females=4 |
Less than 11 years (n=0) Males=0, Females=0 |
0 | |
|
11 to 20 years (n=2) Males=2, Females=0 |
2 | ||
|
21 to 30 years (n=7) Males=3, Female=4 |
6 | ||
|
Secondary education (n=7) Males=6, Females=1 |
Less than 11 years (n=0) Males=0, Females=0 |
0 | |
|
11 to 20 years (n=3) Males=3 Females=0 |
3 | ||
|
21 to 30 years (n=4) Males=3, Females=1 |
3 | ||
|
Tertiary education (n=2) Males=2, Females=0 |
Less than 11 years (n=0) Males=0, Females=0 |
0 | |
|
11 to 20 years (n=0) Males=0, Females=0 |
0 | ||
|
21 to 30 years (n=2) Males=2, Females=0 |
2 |
| Insecticide | WHO Group | Active Ingredient | Chemical Group |
|---|---|---|---|
| Trade name | |||
| Adama abamectin | 6 | Abamectin | Avermectin |
| Allice 222 SL | 4A | Acetamiprid | Neonicotinoid |
| Avi guard | IB | Mercaptothion | Organophosphate |
| Cartap | 14 | Cartap hydrochloride | Cartap hydrochloride |
| Cypermetrin 200 EC | 3A | Cypermetrin | Pyrethroid |
| Hunter 24SC | 13 | Chlorfenapyr | Pyrrole |
| Kemprin 200 EC | 3A | Cypermetrin | Pyrethroid |
| Kombat Malathion | 3 | Mercaptothion | Organophosphate |
| Makhro cyper | 3A | Cypermetrin | Pyrethroid |
| Malasol | IB | Mercaptothion | Organophosphate |
| MECTI | 6A | Abametin | Avermectin |
| Methomex ®900 | II | Methomyl | Carbamate |
| Methomyl 200 SL | 1A | Methomyl | Carbamete |
| Phosdrin ®500 SL | IB | Mevinphos | Organophosphate |
| Stalkborer granules | II | Carbaryl | Carbamate |
| Steward ®150 EC | II | Oxadiazine | Indoxacarb |
| Supermetrin | 3A | Cypermetrin | Pyrethroid |
| Tamron 585 SL | IB | Methamidophos | Organophosphate |
| Warlock® 19.2 EC | 6 | Emamectin benzoate | Avermectin |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
