Preprint
Article

This version is not peer-reviewed.

Adoption of Deep Learning Driven Precision Agriculture for Optimizing Crop Productivity and Soil Health via Predictive Analytics and Autonomous Sensing Mechanisms

Submitted:

30 December 2025

Posted:

01 January 2026

You are already at the latest version

Abstract

The integration of artificial intelligence (AI) in precision agriculture marks a transformative step toward sustainable, efficient, and data-driven farming practices. By merging AI with predictive analytics and autonomous monitoring systems, agriculture is empowered to achieve higher crop yields and maintain robust soil health. AI-driven models process vast datasets from sensors, drones, and IoT devices to predict crop performance, recommend targeted interventions, and enable real-time monitoring of field conditions. This synergy not only allows for early detection of threats such as pests or nutrient deficiencies but also ensures optimized resource utilization, reducing environmental impact. The adoption of these intelligent systems paves the way for a resilient agricultural landscape that can adapt to the challenges posed by climate variability and the growing global food demand, ultimately fostering productivity and long-term ecological sustainability.

Keywords: 
;  ;  ;  ;  ;  ;  ;  ;  ;  
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

Disclaimer

Terms of Use

Privacy Policy

Privacy Settings

© 2026 MDPI (Basel, Switzerland) unless otherwise stated