The demand for ready-to-eat salads made from leafy vegetables such as wild rocket (Diplotaxis tenuifolia L.) continues to rise due to their convenience and high levels of bioactive compounds. However, both organically enriched substrates and sustainable packaging alternatives to conventional plastic films are required to reduce the envi-ronmental impact of wild rocket production. This study assessed the effects of three cultivation substrates as growing media and three biodegradable packaging materials (polylactic acid (PL), cellulose kraft (CK), and kraft-reinforced polylactic acid (PLK)) on the postharvest performance of wild rocket stored at 4 °C for 7 and 14 days. Plants were grown in coco peat (CP), coco peat supplemented with livestock compost (90:10; CP+LC), and coco peat combined with mushroom compost (50:50; CP+MC). Yield and key pre- and postharvest quality attributes, including nitrate accumulation, phenolic content, antioxidant capacity, colour, and weight loss, were evaluated. CP+LC pro-duced the highest harvest yield, whereas CP promoted greater phenolic content and antioxidant capacity. Among the packaging materials, PLK provided the most bal-anced internal atmosphere, effectively reducing dehydration and condensation while preserving superior sensory quality after 14 days. Overall, the integration of organic compost amendments, particularly CP+LC, with PLK bio-based packaging represents a promising and sustainable strategy to maintain postharvest quality and reduce the en-vironmental footprint of minimally processed wild rocket within short food supply chains.