Preprint
Article

This version is not peer-reviewed.

Spatio-Temporal Shoreline Changes and AI-Based Predictions for Sustainable Management of the Damietta–Port Said Coast, Nile Delta, Egypt

Submitted:

06 December 2025

Posted:

09 December 2025

You are already at the latest version

Abstract

The Damietta–Port Said coast, Nile Delta, has experienced extreme morphological change over the past four decades due to sediment reduction due to Aswan High Dam and continued anthropogenic pressures. Using multi-temporal Landsat (1985–2025) and high-resolution RapidEye and PlanetScope imagery with 1127 DSAS transects, the study documents major shoreline shifts: the Damietta sand spit retreated by >1 km at its proximal apex while its distal tip advanced by ≈3.1 km southeastward under persistent longshore drift. Sectoral analyses reveal typical structure-induced patterns of updrift accretion (+180 to +210 m) and downdrift erosion (−50 to −330 m). To improve predictive capability beyond linear DSAS extrapolation, Nonlinear Autoregressive Exogenous (NARX) and Bidirectional Long Short-Term Memory (BiLSTM) neural networks were applied to forecast the 2050 shoreline. BiLSTM demonstrated superior stability, capturing nonlinear sediment transport patterns where NARX produced unstable over-predictions. Furthermore, coupled wave–flow modeling validates a sustainable management strategy employing successive short groins (45–50 m length, 150 m spacing). Simulations indicate that this configuration reduces longshore current velocities by 40–60% and suppress rip-current eddies, offering a sediment-compatible alternative to conventional breakwaters and seawalls. This integrated remote sensing, hydrodynamic, and AI-based framework provides a robust scientific basis for adaptive, sediment-compatible shoreline management, supporting the long-term resilience of one of Egypt’s most vulnerable deltaic coasts under accelerating climatic and anthropogenic pressures.

Keywords: 
;  ;  ;  ;  ;  ;  
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

Disclaimer

Terms of Use

Privacy Policy

Privacy Settings

© 2025 MDPI (Basel, Switzerland) unless otherwise stated