Preprint
Article

This version is not peer-reviewed.

Epitaxial Growth of p-type β-Ga2O3 via Te and Mg Co-Doping Using Metal Organic Chemical Vapor Deposition

Submitted:

07 December 2025

Posted:

09 December 2025

You are already at the latest version

Abstract

β-Gallium oxide (β-Ga2O3) offers considerable potential for next-generation power electronics due to its ultrawide bandgap (~4.9 eV) and established n-type conductivity. Nevertheless, realizing stable p-type doping remains a significant challenge, primarily due to the deep acceptor levels associated with conventional dopants. This article presents a co-doping strategy involving tellurium (Te) and magnesium (Mg), implemented via metal-organic chemical vapor deposition (MOCVD), aimed at addressing this challenge. Density-functional-theory (DFT) calculations suggest that Te incorporation could induce an intermediate band near the valence band maximum (VBM), potentially lowering the acceptor ionization barrier for Mg impurities. Initial experimental results indicate encouraging transport properties: the optimized Te-Mg co-doped thin film showed a room-temperature resistivity as low as 32.4 Ω·cm, with a measured Hall hole concentration of 1.78 × 1017 cm⁻3 and mobility of up to 5.29 cm2/V·s at lower carrier concentrations (5.72 × 1014 cm⁻3). Characterizations reveal evidence of VBM elevation via Te-Ga orbital hybridization and suggest a shift in the Fermi-level toward the valence band compatible with p-type behavior. While these preliminary findings show promise for enabling p-type Ga2O3 homoepitaxy, further research is necessary to optimize carrier concentrations below 1 Ω·cm, fully elucidate the Te-Mg doping dynamics, and provide more comprehensive device-level validation. This work introduces a pathway worthy of further exploration for achieving p-type conductivity in this critical semiconductor.

Keywords: 
;  ;  ;  ;  
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

Disclaimer

Terms of Use

Privacy Policy

Privacy Settings

© 2025 MDPI (Basel, Switzerland) unless otherwise stated