Submitted:
15 September 2025
Posted:
16 September 2025
You are already at the latest version
Abstract
Keywords:
1. Introduction
2. Mathematical Model of the Erbium-Doped Fiber Laser
2.1. General Model and Parameters
2.2. Inclusion of Pump Modulation and Simulation Parameters
2.3. Nondimensionalization of the Erbium-Doped Fiber Laser Model
2.4. Rescaling the Erbium-Doped Fiber Laser Model
3. Fractional Derivative Laser Model
3.1. Two-Stage Fractional Runge–Kutta Method
3.2. Local Stability Analysis
3.3. Global Stability Analysis
4. Comparison with Experimental Results
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Agrawal, G.P. Fiber-Optic Communication Systems, 4th ed.; Wiley, 2010. [Google Scholar]
- Nilsson, J.; Eggleton, B.J. Erbium-doped fiber amplifiers and lasers. J. Lightwave Technol. 2000, 18, 1882–1892. [Google Scholar] [CrossRef]
- Bellemare, A. Continuous-wave silica-based erbium-doped fibre lasers. Prog. Quantum Electron. 2003, 27, 211–266. [Google Scholar] [CrossRef]
- Tur, M.; Lembrikov, B.I.; Kip, D. Nonlinear dynamics of erbium-doped fiber lasers. IEEE J. Quantum Electron. 2004, 40, 1513–1522. [Google Scholar] [CrossRef]
- Tamura, K.; Haus, H.A. Multistability in mode-locked fiber lasers. Appl. Phys. Lett. 1994, 64, 190–192. [Google Scholar] [CrossRef]
- Stewart, G.; Whitenett, G.; Vijayraghavan, K.; Sridaran, S. Investigation of the Dynamic Response of Erbium Fiber Lasers With Potential Application for Sensors. J. Lightwave Technol. 2007, 25, 1786–1796. [Google Scholar] [CrossRef]
- Pisarchik, A.; Jaimes-Reategui, R. Control of basins of attraction in a multistable fiber laser. Phys. Lett. A 2009, 374, 228–234. [Google Scholar] [CrossRef]
- Reategui, R.; Kir yanov, A.; Pisarchik, A.; Barmenkov, Y.O.; Il ichev, N. Experimental study and modeling of coexisting attractors and bifurcations in an erbium-doped fiber laser with diode-pump modulation. Las. Phys. 2004, 14, 1277–1281. [Google Scholar]
- Pisarchik, A.N.; Kir’yanov, A.V.; Barmenkov, Y.O.; Jaimes-Reátegui, R. Dynamics of an erbium-doped fiber laser with pump modulation: theory and experiment. J. Opt. Soc. Am. B 2005, 22, 2107–2114. [Google Scholar] [CrossRef]
- Lacot, E.; Stoeckel, F.; Chenevier, M. Dynamics of an erbium-doped fiber laser. Phys. Rev. A 1994, 49, 3997. [Google Scholar] [CrossRef]
- Barba-Franco, J.J.; Romo-Muñoz, L.; Jaimes-Reátegui, R.; García-López, J.; Huerta-Cuéllar, G.; Pisarchik, A.N. Electronic equivalent of a pump-modulated erbium-doped fiber laser. Integration 2023, 89, 106–113. [Google Scholar]
- Yanik, M.F.; Fan, S. Stopping light in a waveguide with an all-optical analogue of electromagnetically induced transparency. Phys. Rev. Lett. 2004, 92, 083901. [Google Scholar] [CrossRef] [PubMed]
- Miller, K.S.; Ross, B. An Introduction to the Fractional Calculus and Fractional Differential Equations. Wiley 1993. [Google Scholar]
- Podlubny, I. Fractional Differential Equations; Academic Press, 1999. [Google Scholar]
- Hilfer, R. Applications of fractional calculus in physics. World Scientific 2000. [Google Scholar]
- Petráš, I. Fractional-Order Nonlinear Systems: Modeling, Analysis and Simulation; Springer Science & Business Media, 2011. [Google Scholar]
- Najafi, H.S.; Mahmud, M.T.J.M. Fractional-order dynamics in nonlinear optical systems. Opt. Commun. 2011, 284, 3571–3576. [Google Scholar] [CrossRef]
- Ochoa, S.E.J.; Duarte-Mermoud, M.A. Fractional order models for chaotic lasers. Chaos Solitons Fractals 2017, 102, 57–66. [Google Scholar] [CrossRef]
- Yang, F.; Mou, J.; Ma, C.; Cao, Y. Dynamic analysis of an improper fractional-order laser chaotic system and its image encryption application. Opt. Lasers Eng. 2020, 129, 106031. [Google Scholar] [CrossRef]
- Alzaid, S.S.; Chauhan, R.; Kumar, S.; Alkahtani, B.S.T. A high order numerical scheme for fractal-fractional laser system with chaos study. Fractals 2022, 30, 2240183. [Google Scholar] [CrossRef]
- Atangana, A.; Araz, S.I. New Numerical Scheme with Newton Polynomial: Theory, Methods, and Applications; Academic Press: London, 2021. [Google Scholar]
- Liu, Z. Bifurcation and control tactics in a fractional-order delayed single-model laser system. Eur. Phys. J. Plus 2022, 137, 576. [Google Scholar] [CrossRef]
- Khalaf, H.; Mahmoud, G.M.; Bountis, T.; AboElkher, A.M. A distributed-order fractional hyperchaotic detuned laser model: Dynamics, multistability and dual combination synchronization. Preprint 2025. [Google Scholar] [CrossRef]
- Ghoreishi, F.; Ghaffari, R.; Saad, N. Fractional order Runge–Kutta methods. Fractal and Fractional 2023, 7, 245. [Google Scholar] [CrossRef]
- Strogatz, S.H. Nonlinear Dynamics and Chaos: With Applications to Physics, Biology, Chemistry, and Engineering (Studies in Nonlinearity), 2nd ed.; Westview Press, 2015. [Google Scholar]
- Gawade, S. The Newton–Raphson method: a detailed analysis. Int. J. Res. Appl. Sci. Eng. Technol. 2010, 12, 729–734. [Google Scholar] [CrossRef]
- Diethelm, K. The Analysis of Fractional Differential Equations; Springer–Verlag: Berlin, 2010. [Google Scholar]
- Echenausía-Monroy, J.L.; Gilardi-Velázquez, H.E.; Jaimes-Reátegui, R.; Aboites, V.; Huerta-Cuéllar, G. A physical interpretation of fractional-order-derivatives in a jerk system: Electronic approach. Commun. Nonlin. Sci. Numer. Simul. 2020, 90, 105413. [Google Scholar] [CrossRef]
- Pisarchik, A.; Jaimes-Reátegui, R.; Sevilla-Escoboza, R.; Huerta-Cuellar, G. Multistate intermittency and extreme pulses in a fiber laser. Phys. Rev. E 2012, 86, 056219. [Google Scholar] [CrossRef]
- Afanador-Delgado, S.M.; Echenausía-Monroy, J.L.; Huerta-Cuellar, G.; García-López, J.H.; Lopez-Muñoz, E.E.; Jaimes-Reátegui, R. Logic gate generation in a monostable optical system: improving the erbium-doped fiber laser reconfigurable logic operation. Photonics 2024, 11, 1103. [Google Scholar] [CrossRef]
- Jaimes-Reátegui, R.; De La Torre, J.O.E.; García-López, J.; Huerta-Cuellar, G.; Aboites, V.; Pisarchik, A. Generation of giant periodic pulses in the array of erbium-doped fiber lasers by controlling multistability. Opt. Commun. 2020, 477, 126355. [Google Scholar] [CrossRef]








| Dimensionless Parameters | ||
|---|---|---|
| Symbol | Expression | Value |
| a | ||
| b | ||
| c | ||
| d | ||
| e | 506 | |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
