Submitted:
10 September 2025
Posted:
11 September 2025
You are already at the latest version
Abstract
Keywords:
1. Introduction
2. Materials and Methods
2.1. Study Design
2.2. Patients
2.3. Study Variables
2.4. Procedure
2.5. Risk Assessment of Late-Onset Preeclampsia
- Maternal factors: date of birth (dd-mm-yyyy), ethnicity (White, Black, South Asian, East Asian or Mixed), height (cm), weight (kg), currently smoking (Yes/No), conception method (spontaneous, ovulation drugs or in vitro fertilization), family history of PE (Yes/No), and parity (Nulliparous or Parous); for multiparous women, additional data from the previous pregnancy were recorded, including history of preeclampsia (Yes/No), date of delivery (dd-mm-yyyy), and gestational age at delivery (weeks and days), while systemic conditions were also documented, including pregestational diabetes (Yes, type I or II)/No), chronic hypertension (Yes/No), a personal history of PE (Yes/No), systemic lupus erythematosus (Yes/No), and antiphospholipid syndrome (Yes/No).
- Biophysical parameters: right uterine artery pulsatility index (PI), left uterine artery PI, MAP (mmHg), and date of measurement of biophysical parameters.
- Biochemical parameters: the sFlt-1 (pg/mL) in the third trimester, the PlGF (pg/mL) in the third trimester, and data of measurement of biochemical parameters.
2.6. Data Collection
2.7. Statistical Analysis
3. Results
3.1. The Characteristics of the Study Population
3.2. The Predictive Performance of the Fetal Medicine Foundation’s Third-Trimester Model for Late-Onset Preeclampsia
3.3. Improvement of the Fetal Medicine Foundation’s Third-Trimester Model
3.3.1. Modification of the Cutoffs for Our Population of Pregnant Women
3.3.2. The Incorporation of Additional Variables Not Included in the Original Model
3.4. The Development of Our Own Predictive Model
- SD: Systemic disease (pregestational diabetes, chronic hypertension, a personal history of PE and/or FGR, antiphospholipid syndrome, and/or kidney disease) (0 = no; 1 = yes);
- GD: Gestational diabetes (0 = no; 1 = yes);
- ART: Assisted reproductive technology (0 = no; 1 = yes);
- GWG: Gestational weight gain (kg);
- RATIO: The sFlt-1/PlGF ratio in the third trimester;
- DBP: Diastolic blood pressure (mmHg) in the third trimester;
- AGE: Maternal age (years);
- BMI: Body mass index (Kg/m2).
4. Discussion
4.1. A Comparative Analysis According to the Development of Late preeclampsia and Its Absence
4.2. The Predictive Performance of the Fetal Medicine Foundation’s Third-Trimester Model for Late-Onset Preeclampsia
4.3. Improvement of the Fetal Medicine Foundation’s Third-Trimester Model
4.3.1. Modification of the Cutoffs for Our Population of Pregnant Women
4.3.2. The Incorporation of Additional Variables Not Included in the Original Model
4.4. The Development of Our Own Predictive Model
4.5. Strengths and Limitations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
| AIC | Akaike Information Criterion |
| ASA | aspirin |
| AUC | area under the curve |
| BMI | body mass index |
| CI | confidence interval |
| CIs | confidence intervals |
| DBP | diastolic blood pressure |
| DR | detection rate |
| FGR | fetal growth restriction |
| FMF | Fetal Medicine Foundation |
| FPR | false positive rate |
| ISSHP | International Society for the Study of Hypertension in Pregnancy |
| LR- | negative likelihood ratio |
| LR+ | positive likelihood ratio |
| MAP | mean arterial pressure |
| MoM | multiples of the median |
| NPV | negative predictive value |
| PE | preeclampsia |
| PI | pulsatility index |
| PlGF | placental growth factor |
| PPV | positive predictive value |
| ROC | receiver operating characteristic |
| SBP | systolic blood pressure |
| Se | sensitivity |
| SEGO | Spanish Society of Gynecology and Obstetrics |
| sFlt-1 | soluble fms-like tyrosine kinase-1 |
| Sp | specificity |
| UtA-PI | uterine artery pulsatility index |
References
- Chappell, L. C.; Cluver, C. A.; Kingdom, J.; Tong, S. Pre-Eclampsia. Lancet 2021, 398 (10297), 341–354. [CrossRef]
- Magee, L. A.; Nicolaides, K. H.; von Dadelszen, P. Preeclampsia. N. Engl. J. Med. 2022, 386 (19), 1817–1832. [CrossRef]
- Villalaín González, C.; Herraiz García, I.; Fernández-Friera, L.; Ruiz-Hurtado, G.; Morales, E.; Solís, J.; Galindo, A. Salud Cardiovascular y Renal En La Mujer: La Preeclampsia Como Marcador de Riesgo. Nefrología 2023, 43 (3), 269–280. [CrossRef]
- Romero Naranjo, J. M.; Ramírez López, A. L.; Gutiérrez López, C. M. Preeclampsia, ¿factor de Riesgo Cardiovascular a Futuro En Madres y Descendencia? Rev. Medica Sinerg. 2023, 8 (6), e1058. [CrossRef]
- Kucukgoz Gulec, U.; Ozgunen, F. T.; Buyukkurt, S.; Guzel, A. B.; Urunsak, I. F.; Demir, S. C.; Evruke, I. C. Comparison of Clinical and Laboratory Findings in Early- and Late-Onset Preeclampsia. J Matern Fetal Neonatal Med 2013, 26 (12), 1228–1233. [CrossRef]
- Raymond, D.; Peterson, E. A Critical Review of Early-Onset and Late-Onset Preeclampsia. Obstet. Gynecol. Surv. 2011, 66 (8), 497–506. [CrossRef]
- Robillard, P.-Y.; Dekker, G.; Chaouat, G.; Elliot, M. G.; Scioscia, M. High Incidence of Early Onset Preeclampsia Is Probably the Rule and Not the Exception Worldwide. 20th Anniversary of the Reunion Workshop. A Summary. J. Reprod. Immunol. 2019, 133, 30–36. [CrossRef]
- Panaitescu, A.; Ciobanu, A.; Syngelaki, A.; Wright, A.; Wright, D.; Nicolaides, K. H. Screening for Pre-Eclampsia at 35–37 Weeks’ Gestation. Ultrasound Obstet. Gynecol. 2018, 52 (4), 501–506. [CrossRef]
- Han, L.; Holland, O. J.; Da Silva Costa, F.; Perkins, A. V. Potential Biomarkers for Late-Onset and Term Preeclampsia: A Scoping Review. Front. Physiol. 2023, 14, 1143543. [CrossRef]
- Mula, R.; Meler, E.; Albaiges, G.; Rodriguez, I. Strategies for the Prediction of Late Preeclampsia. J. Matern. Neonatal Med. 2019, 32 (22), 3729–3733. [CrossRef]
- Tiruneh, S. A.; Vu, T. T. T.; Moran, L. J.; Callander, E. J.; Allotey, J.; Thangaratinam, S.; Rolnik, D. L.; Teede, H. J.; Wang, R.; Enticott, J. Externally Validated Prediction Models for Pre-Eclampsia: Systematic Review and Meta-Analysis. Ultrasound Obstet. Gynecol. 2024, 63 (5), 592–604. [CrossRef]
- Poon, L. C.; Shennan, A.; Hyett, J. A.; Kapur, A.; Hadar, E.; Divakar, H. The International Federation of Gynecology and Obstetrics (FIGO) Initiative on Pre-Eclampsia: A Pragmatic Guide for First-Trimester Screening and Prevention. Int. J. Gynecol. Obstet. 2019, 145 Suppl (Suppl 1), 1–33. [CrossRef]
- Magee, L. A.; Brown, M. A.; Hall, D. R.; Gupte, S.; Hennessy, A.; Karumanchi, S. A.; Kenny, L. C.; McCarthy, F.; Myers, J.; Poon, L. C.; Rana, S.; Saito, S.; Staff, A. C.; Tsigas, E.; von Dadelszen, P. The 2021 International Society for the Study of Hypertension in Pregnancy Classification, Diagnosis & Management Recommendations for International Practice. Pregnancy Hypertens. 2022, 27, 148–169. [CrossRef]
- Carrascosa, A.; Yeste, D.; Copil, A.; Almar, J.; Salcedo, S.; Gussinyé, M. Anthropometric growth patterns of preterm and full-term newborns (24-42 weeks’ gestational age) at the Hospital Materno-Infantil Vall d’Hebron (Barcelona)(1997-2002). An. Pediatr. 2004, 60 (5), 406–416. [CrossRef]
- Döbert, M.; Wright, A.; Varouxaki, A. N.; Mu, A. C.; Syngelaki, A.; Rehal, A.; Delgado, J. L.; Akolekar, R.; Muscettola, G.; Janga, D.; Singh, M.; Martin-Alonso, R.; Dütemeyer, V.; De Alvarado, M.; Atanasova, V.; Wright, D.; Nicolaides, K. H. STATIN Trial: Predictive Performance of Competing-Risks Model in Screening for Pre-Eclampsia at 35-37 Weeks’ Gestation. Ultrasound Obstet. Gynecol. 2022, 59 (1), 69–75. [CrossRef]
- Wright, D.; Nicolaides, K. H. Aspirin Delays the Development of Preeclampsia. Am. J. Obstet. Gynecol. 2019, 220 (6), 580.e1-580.e6. [CrossRef]
- Tan, M. Y.; Wright, D.; Syngelaki, A.; Akolekar, R.; Cicero, S.; Janga, D.; Singh, M.; Greco, E.; Wright, A.; Maclagan, K.; Poon, L. C.; Nicolaides, K. H. Comparison of Diagnostic Accuracy of Early Screening for Pre-Eclampsia by NICE Guidelines and a Method Combining Maternal Factors and Biomarkers: Results of SPREE. Ultrasound Obstet. Gynecol. 2018, 51 (6), 743–750. [CrossRef]
- Espinoza, J. Uteroplacental Ischemia in Early- and Late-Onset Pre-Eclampsia: A Role for the Fetus? Ultrasound Obstet. Gynecol. 2012, 40 (4), 373–382. [CrossRef]
- Dimitriadis, E.; Rolnik, D. L.; Zhou, W.; Estrada-Gutierrez, G.; Koga, K.; Francisco, R. P. V; Whitehead, C.; Hyett, J.; da Silva Costa, F.; Nicolaides, K.; Menkhorst, E. Pre-Eclampsia. Nat. Rev. Dis. Prim. 2023, 9 (1), 8. [CrossRef]
- Andrietti, S.; Silva, M.; Wright, A.; Wright, D.; Nicolaides, K. H. Competing-Risks Model in Screening for Pre-Eclampsia by Maternal Factors and Biomarkers at 35-37 Weeks’ Gestation. Ultrasound Obstet. Gynecol. 2016, 48 (1), 72–79. [CrossRef]
- Rolnik, D. L.; Wright, D.; Poon, L. C.; O’Gorman, N.; Syngelaki, A.; de Paco Matallana, C.; Akolekar, R.; Cicero, S.; Janga, D.; Singh, M.; Molina, F. S.; Persico, N.; Jani, J. C.; Plasencia, W.; Papaioannou, G.; Tenenbaum-Gavish, K.; Meiri, H.; Gizurarson, S.; Maclagan, K.; Nicolaides, K. H. Aspirin versus Placebo in Pregnancies at High Risk for Preterm Preeclampsia. N. Engl. J. Med. 2017, 377 (7), 613–622. [CrossRef]
- Robillard, P.-Y.; Dekker, G.; Boukerrou, M.; Boumahni, B.; Hulsey, T.; Scioscia, M. Gestational Weight Gain and Rate of Late-Onset Preeclampsia: A Retrospective Analysis on 57 000 Singleton Pregnancies in Reunion Island. BMJ 2020, 10 (7), e036549. [CrossRef]
- Hung, T. H.; Hsieh, T. T. an.; Chen, S. F. Risk of Abnormal Fetal Growth in Women with Early- and Late-Onset Preeclampsia. Pregnancy Hypertens. 2018, 12, 201–206. [CrossRef]
- Tan, M. Y.; Syngelaki, A.; Poon, L. C.; Rolnik, D. L.; O’Gorman, N.; Delgado, J. L.; Akolekar, R.; Konstantinidou, L.; Tsavdaridou, M.; Galeva, S.; Ajdacka, U.; Molina, F. S.; Persico, N.; Jani, J. C.; Plasencia, W.; Greco, E.; Papaioannou, G.; Wright, A.; Wright, D.; Nicolaides, K. H. Screening for Pre-Eclampsia by Maternal Factors and Biomarkers at 11–13 Weeks’ Gestation. Ultrasound Obstet. Gynecol. 2018, 52 (2), 186–195. [CrossRef]
- Gallo, D. M.; Wright, D.; Casanova, C.; Campanero, M.; Nicolaides, K. H. Competing Risks Model in Screening for Preeclampsia by Maternal Factors and Biomarkers at 19-24 Weeks’ Gestation. Am. J. Obstet. Gynecol. 2016, 214 (5), 619.e1-619.e17. [CrossRef]
- Valiño, N.; Giunta, G.; Gallo, D. M.; Akolekar, R.; Nicolaides, K. H. Biophysical and Biochemical Markers at 35-37 Weeks’ Gestation in the Prediction of Adverse Perinatal Outcome. Ultrasound Obstet. Gynecol. 2016, 47 (2), 203–209. [CrossRef]
- Levine, R. J.; Maynard, S. E.; Qian, C.; Lim, K. H.; England, L. J.; Yu, K. F.; Schisterman, E. F.; Thadhani, R.; Sachs, B. P.; Epstein, F. H.; Sibai, B. M.; Sukhatme, V. P.; Karumanchi, S. A. Circulating Angiogenic Factors and the Risk of Preeclampsia. N. Engl. J. Med. 2004, 350 (7), 672–683. [CrossRef]
- Robillard, P. Y.; Dekker, G.; Scioscia, M.; Bonsante, F.; Iacobelli, S.; Boukerrou, M.; Hulsey, T. C. Increased BMI Has a Linear Association with Late-Onset Preeclampsia: A Population-Based Study. PLoS One 2019, 14 (10), 1–14. [CrossRef]
- Ciobanu, A.; Wright, A.; Panaitescu, A.; Syngelaki, A.; Wright, D.; Nicolaides, K. H. Prediction of Imminent Preeclampsia at 35–37 Weeks Gestation. Am. J. Obstet. Gynecol. 2019, 220 (6), 584.e1-584.e11. [CrossRef]
- Díaz Cobos, D.; Laparte, C.; Ruiz-Zambrana, A.; Alcázar, J. L. First Trimester Screening of Late-Onset Preeclampsia in a Low Risk and Low Volume Obstetrical Setting: External Validation of a Predictive Model. An. Sist. Sanit. Navar. 2015, 38 (3), 387–396. [CrossRef]
- Murtoniemi, K.; Villa, P. M.; Matomäki, J.; Keikkala, E.; Vuorela, P.; Hämäläinen, E.; Kajantie, E.; Pesonen, A.-K.; Räikkönen, K.; Taipale, P.; Stenman, U.-H.; Laivuori, H. Prediction of Pre-Eclampsia and Its Subtypes in High-Risk Cohort: Hyperglycosylated Human Chorionic Gonadotropin in Multivariate Models. BMC Pregnancy Childbirth 2018, 18 (1), 279. [CrossRef]
- Zhang, J.; Han, L.; Li, W.; Chen, Q.; Lei, J.; Long, M.; Yang, W.; Li, W.; Zeng, L.; Zeng, S. Early Prediction of Preeclampsia and Small-for-Gestational-Age via Multi-Marker Model in Chinese Pregnancies: A Prospective Screening Study. BMC Pregnancy Childbirth 2019, 19 (1), 304. [CrossRef]
- Moons, K. G.; Kengne, A. P.; Woodward, M.; Royston, P.; Vergouwe, Y.; Altman, D. G.; Grobbee, D. E. Risk Prediction Models: I. Development, Internal Validation, and Assessing the Incremental Value of a New (Bio)Marker. Heart 2012, 98 (9), 683–690. [CrossRef]
- Moons, K. G.; Kengne, A. P.; Grobbee, D. E.; Royston, P.; Vergouwe, Y.; Altman, D. G.; Woodward, M. Risk Prediction Models: II. External Validation, Model Updating, and Impact Assessment. Heart 2012, 98 (9), 691–698. [CrossRef]
- Sanco-Insenser, J.-J.; Gónzalez-Castillo, A. M. Pruebas Diagnósticas. ¿Cómo Describir Su Validez? Elsevier 2022, 100 (9), 590–594. [CrossRef]
- Gómez González, C.; Pérez Castán, J. F. Curso de Introducción a La Investigación Clínica. Capítulo 8: Pruebas Diagnósticas. Concordancia. Semergen 2007, 33 (10), 509–519. [CrossRef]
- Silva Fuente-Alba, C.; Molina Villagra, M. Likelihood Ratio (Razón de Verosimilitud): Definición y Aplicación En Radiología. Rev. Argent Radiol. 2017, 81 (3), 204–208. [CrossRef]
- Deeks, J. J.; Altman, D. G. Diagnostic Tests 4: Likelihood Ratios. BMJ 2004, 329 (7458), 168–169. [CrossRef]
- Sarno, M.; Wright, A.; Vieira, N.; Sapantzoglou, I.; Charakida, M.; Nicolaides, K. H. Ophthalmic Artery Doppler in Combination with Other Biomarkers in Prediction of Pre-Eclampsia at 35-37 Weeks’ Gestation. Ultrasound Obstet. Gynecol. 2021, 57 (4), 600–606. [CrossRef]
- O’Gorman, N.; Tampakoudis, G.; Wright, A.; Wright, D.; Nicolaides, K. H. Uterine Artery Pulsatility Index at 12, 22, 32 and 36 Weeks’ Gestation in Screening for Pre-Eclampsia. Ultrasound Obstet. Gynecol. 2016, 47 (5), 565–572. [CrossRef]
- Martínez Pérez, J. A.; Pérez Martin, P. S. La Curva ROC. Semergen 2023, 49 (1), 101821. [CrossRef]
- Núñez, E.; Steyerberg, E. W.; Núñez, J. Estrategias Para La Elaboración de Modelos Estadísticos de Regresión. Rev. Esp Cardiol. 2011, 64 (6), 501–507. [CrossRef]


| NO LATE PE (N= 1534) | LATE PE (N = 46) | p-Value | |
|---|---|---|---|
| Maternal characteristics | |||
| Demographic and epidemiological data | |||
| Maternal age in years | 32.01 ± 5.83 | 31.78 ± 6.52 | 0.838 |
| Racial origin | |||
| Caucasian | 1497 (97.59) | 46 (100) | 0.624 |
| Other | 37 (2.41) | 0 (0.0) | |
| Maternal body mass index, Kg/m2 | 25.20 ± 4.87 | 28.35 ± 6.75 | 0.002 |
| Smoking | 171 (11.15) | 3 (6.52) | 0.472 |
| Family history of PE | 40 (2.61) | 3 (6.52) | 0.127 |
| Parity (number of previous deliveries) | |||
| None | 790 (51.50) | 33 (71.74) | 0.032 |
| One | 521 (33.96) | 12 (26.09) | |
| Two | 163 (10.63) | 1 (2.17) | |
| Three or more | 60 (3.91) | 0 (0) | |
| Maternal comorbidities | |||
| Chronic hypertension | 29 (1.89) | 2 (4.34) | 0.227 |
| Personal PE and/or FGR | 39 (2.54) | 6 (13.04) | 0.002 |
| Systemic disease | 77 (5.02) | 9 (19.57) | 0.001 |
| Clinical pregnancy data | |||
| Assisted reproduction | |||
| NO | 1,447 (94.33) | 39 (84.78) | 0.017 |
| SI | 87 (5.67) | 7 (15.22) | |
| Gestational weight gain (kg) | 11.31 ± 3.87 | 11.97 ± 6.45 | 0.843 |
| Aspirin intake | 39 (2.54) | 9 (19.57) | <0.001 |
| Biophysical markers | |||
| SBP (mmHg) | |||
| 1st T | 117.51 ± 11.50 | 123.61 ± 10.89 | 0.001 |
| 2nd T | 112.52 ± 9.47 | 124.89 ± 9.00 | <0.001 |
| 3rd T | 116.65 ± 11.01 | 132.87 ± 14.76 | <0.001 |
| DBP (mmHg) | |||
| 1st T | 73.93 ± 8.70 | 78.52 ± 8.89 | 0.001 |
| 2nd T | 71.84 ± 8.48 | 77.63 ± 6.42 | <0.001 |
| 3rd T | 75.60 ± 7.94 | 87.30 ± 8.37 | <0.001 |
| MAP (mmHg) | |||
| 1st T | 88.46 ± 8.52 | 93.55 ± 8.27 | <0.001 |
| 2nd T | 85.40 ± 7.74 | 93.38 ± 6.46 | <0.001 |
| 3rd T | 89.28 ± 7.93 | 102.49 ± 9.46 | <0.001 |
| Uterine artery PI median | |||
| 1st T | 1.38 ± 0.49 | 1.47 ± 0.52 | 0.284 |
| 2nd T | 0.93 ± 0.23 | 1.08 ± 0.38 | 0.004 |
| 3rd T | 0.69 ± 0.18 | 0.80 ± 0.28 | 0.011 |
| Biochemical markers | |||
| PlGF (pg/mL) 1st T | 33.39 ± 16.01 | 25.54 ± 10.40 | <0.001 |
| sFlt-1 (pg/mL) 3rd T | 1333.68 ± 1444.25 | 3630.76 ± 5379.09 | <0.001 |
| PlGF (pg/mL) 3rd T | 437.54 ± 344.07 | 156.05 ± 95.06 | <0.001 |
| sFlt-1/PlGF 3rd T | 9.54 ± 13.69 | 53.70 ± 64.55 | <0.001 |
| Obstetric outcomes | |||
| Gestational diabetes | 152 (9.91) | 14 (30,43) | <0.001 |
| FGR | 33 (2.15) | 5 (10.87) | 0.004 |
| Perinatal outcomes | |||
| Birth weight (g) | 3304.40 ± 420.58 | 2973.15 ± 575.75 | <0.001 |
| Low birth weight | 320 (20.86) | 21 (45.65) | <0.001 |
| Birth weight percentile | 34.52 ± 26.31 | 28.15 ± 29.27 | 0.015 |
| Estimate and 95% CI | |
|---|---|
| Sensitivity (%) | 32.6 (19.1–46.1) |
| Specificity (%) | 98.6 (98.0–99.2) |
| PPV (%) | 41.7(25.6–57.8) |
| NPV (%) | 98.0 (97.3–98.7) |
| FPR (%) | 1.3 |
| Positive LR | 23.286 (12.855–42.181) |
| Negative LR | 0.684 (0.559–0.836) |
| Cutoff | ≥1/100 | ≥1/150 | ≥1/200 |
|---|---|---|---|
| Sensitivity (%) | 60.9 (46.8–75.0) | 60.9 (46.8–75.0) | 63.0 (49.0–77.0) |
| Specificity (%) | 94.6 (93.5–95.7) | 92.8 (91.5–94.1) | 91.4 (90.0–92.8) |
| PPV (%) | 25.2 (17.1–33.3) | 20.1 (13.4–26.8) | 18.0 (12.1–23.9) |
| NPV (%) | 98.8 (98.2–99.4) | 98.8 (98.2–99.4) | 98.8 (98.2–99.4) |
| FPR (%) | 5.3 | 7.0 | 8.3 |
| Positive LR | 11.278 (8.254–15.410) | 8.458 (6.311–11.336) | 3.326 (5.565–9.645) |
| Negative LR | 0.413 (0.288–0.592) | 0.421 (0.293–0.604) | 0.405 (0.278–0.591) |
| Crude Adjustment | Multivariate Adjustment with ASA | |
|---|---|---|
| AUC | 0.871 (0.813–0.929) | 0.872 (0.813–0.930) |
| Cutoff | Se (%) | Sp (%) | FPR (%) | PPV (%) | PNV (%) | LR+ | LR− |
|---|---|---|---|---|---|---|---|
| 0.05 | 76.1 | 91.6 | 8.2 | 21.3 | 99.2 | 9.0 | 0.261 |
| 0.10 | 69.6 | 96.0 | 3.9 | 34.0 | 99.1 | 17.4 | 0.317 |
| 0.15 | 54.3 | 97.5 | 2.5 | 39.1 | 98.6 | 21.7 | 0.469 |
| 0.20 | 45.7 | 98.4 | 1.5 | 46.7 | 98.4 | 28.5 | 0.552 |
| 0.25 | 45.7 | 98.7 | 1.3 | 51.2 | 98.4 | 35.1 | 0.550 |
| 0.30 | 43.5 | 99.2 | 0.8 | 60.6 | 98.3 | 54.3 | 0.570 |
| 0.35 | 41.3 | 99.5 | 0.5 | 70.4 | 98.3 | 82.6 | 0.590 |
| 0.40 | 39.1 | 99.5 | 0.4 | 72.0 | 98.2 | 78.2 | 0.612 |
| 0.45 | 39.1 | 99.6 | 0.4 | 75.0 | 98.2 | 97.7 | 0.611 |
| 0.50 | 37.0 | 99.7 | 0.3 | 81.0 | 98.1 | 123 | 0.632 |
| 0.55 | 34.8 | 99.9 | 0.1 | 88.9 | 98.1 | 348 | 0.653 |
| 0.60 | 30.4 | 99.9 | 0.1 | 87.5 | 98.0 | 304 | 0.697 |
| 0.65 | 26.1 | 99.9 | 0.1 | 92.3 | 97.8 | 261 | 0.740 |
| 0.70 | 23.9 | 99.9 | 0.1 | 91.7 | 97.8 | 239 | 0.762 |
| 0.75 | 21.7 | 99.9 | 0.1 | 90.9 | 97.7 | 217 | 0.784 |
| 0.80 | 17.4 | 99.9 | 0.1 | 88.9 | 97.6 | 174 | 0.827 |
| 0.85 | 13.0 | 99.9 | 0.1 | 85.7 | 97.5 | 130 | 0.871 |
| 0.90 | 13.0 | 99.9 | 0.1 | 85.7 | 97.5 | 130 | 0.871 |
| 0.95 | 10.9 | 99.9 | 0.1 | 83.3 | 97.4 | 109 | 0.892 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
