Submitted:
17 July 2025
Posted:
18 July 2025
You are already at the latest version
Abstract
Keywords:
MSC: 30C45, 30C50
1. Introduction and Motivation
2. Definition and Properties of the Class
-
Let . Then the class reduces toconsisting of functions satisfyingIf we further set , we obtainwhere
-
Let . Then the class becomesconsisting of functions satisfyingFor , this further reduces towhere
3. The Fekete-Szegö Inequality for the Class
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Lindelöf, E. Mémoire sur certaines inégalités dans la théorie des fonctions monogènes et sur quelques propriétés nouvelles de ces fonctions dans le voisinage d’un point singulier essentiel. Ann. Soc. Sci. Fenn. 1909, 35, 1–35.
- Rogosinski, W.; Szegö, G. Über die Abschätzungen von Potenzreihen, die in einem Kreise beschränkt bleiben. Math. Z. 1928, 28, 73–94.
- Rogosinski, W. On the coefficients of subordinate functions. Proc. Lond. Math. Soc. 1943, 48, 48–82.
- Littlewood, J.E. Lectures on the Theory of Functions; Oxford University Press: Oxford, UK, 1944.
- P. L. Duren, Univalent Functions, Grundlehren der Mathematischen Wissenschaften, Bd. 259, Springer-Verlag, Berlin, Heidelberg, New York and Tokyo, (1983).
- Goodman, A.W. Univalent Functions, Vols. 1–2; Mariner Publishing Company Inc.: Tampa, FL, USA, 1983.
- Pommerenke, C. Univalent Functions; Vandenhoeck & Ruprecht: Göttingen, Germany, 1975.
- Ma, W.; Minda, D. A Unified Treatment of Some Special Classes of Univalent Functions. In Proceedings of the Conference on Complex Analysis; Li, Z., Ren, F., Yang, L., Zhang, S., Eds.; International Press: 1994; pp. 157–169. [CrossRef]
- Babalola, K.O. On λ-Pseudo-Starlike Functions. J. Class. Anal. 2013, 3(2), 137–147.
- Sakaguchi, K. On a Certain Univalent Mapping. J. Math. Soc. Jpn. 1959, 11, 72–75.
- Wang, G.; Gao, C.Y.; Yuan, S.M. On Certain Subclasses of Close-to-Convex and Quasi-Convex Functions with Respect to k-Symmetric Points. J. Math. Anal. Appl. 2006, 32(1), 97–106.
- Srivastava, H.M.; Mishra, A.K.; Gochhayat, P. Certain Subclasses of Analytic and Bi-Univalent Functions. Appl. Math. Lett. 2010, 23, 1188–1192. [CrossRef]
- Xu, Q.-H.; Gui, Y.-C.; Srivastava, H.M. Coefficient Estimates for a Certain Subclass of Analytic and Bi-Univalent Functions. Appl. Math. Lett. 2012, 25, 990–994. [CrossRef]
- Xu, Q.-H.; Xiao, H.-G.; Srivastava, H.M. A Certain General Subclass of Analytic and Bi-Univalent Functions and Associated Coefficient Estimate Problems. Appl. Math. Comput. 2012, 218, 11461–11465. [CrossRef]
- Fekete M. and Szegö G. Eine Bemerkung Über Ungerade Schlichte Funktionen, J. London Math. Soc. [s1-8(2)] (1933), 85-89. [CrossRef]
- Lewin, M. On a Coefficient Problem for Bi-Univalent Functions. Proc. Am. Math. Soc. 1967, 18, 63–68.
- Brannan, D.A.; Clunie, J.G., Eds. Aspects of Contemporary Complex Analysis; Academic Press: London, UK, 1980.
- Netanyahu, E. The Minimal Distance of the Image Boundary from the Origin and the Second Coefficient of a Univalent Function in |z|<1. Arch. Ration. Mech. Anal. 1969, 32, 100–112.
- Murugusundaramoorthy, G.; Sokoł, J. On λ-Pseudo Bi-Starlike Functions Related to Some Conic Domains. Bull. Transilv. Univ. Brasov Ser. III Math. Inform. Phys. 2019, 12(61), 381–392. [CrossRef]
- Murugusundaramoorthy, G.; Cho, N. E.; Viyaja, K. A Class of ϑ-Bi-Pseudo Starlike Functions With Respect to Symmetric Points Associated with Telephone Numbers Afrika Matematika 2024, 35(17), 17. [CrossRef]
- Altınkaya, Ş.; Yalçın, S. On the Chebyshev Polynomial Coefficient Problem of Some Subclasses of Bi-univalent Functions. Gulf J. Math. 2017, 5(3), 34–40. [CrossRef]
- Srivastava, H.M.; Altınkaya, Ş.; Yalçın, S. Certain Subclasses of Bi-univalent Functions Associated with the Horadam Polynomials. Iran. J. Sci. Technol. Trans. A Sci. 2019, 43(4), 1873–1879. [CrossRef]
- Akgül, A. Fekete–Szegö Variations for Some New Classes of Analytic Functions Explained over Poisson and Borel Distribution Series. Math. Methods Appl. Sci. 2025, 48. [CrossRef]
- Akgül A, Oros GI. Gregory Polynomials Within Sakaguchi-Type Function Classes: Analytical Estimates and Geometric Behavior. Symmetry. 2025 Jun 5;17(6),884. [CrossRef]
- Akgül, A.; Sakar, F.M. A New Characterization of (P,Q)-Lucas Polynomial Coefficients of the Bi-Univalent Function Class Associated with the q-Analogue of Noor Integral Operator. Afr. Mat. 2022, 33(3), 87. [CrossRef]
- Akgül, A.; Sakar, F.M. A Certain Subclass of Bi-univalent Analytic Functions Introduced by Means of the q-Analogue of Noor Integral Operator and Horadam Polynomials. Turk. J. Math. 2019, 43(5), 2275–2286. [CrossRef]
- Abirami, C.; Magesh, N.; Yamini, J.; Kargar, R. Horadam Polynomial Coefficient Estimates for the Classes of α-Bi-Pseudo-Starlike and Bi-Bazilevič Functions. J. Anal. 2020, 28, 951–960. [CrossRef]
- Amourah, A.; Salleh, Z.; Frasin, B.A.; Khan, M.G.; Ahmad, B. Subclasses of Bi-univalent Functions Subordinate to Gegenbauer Polynomials. Afr. Mat. 2023, 34(3), 41. [CrossRef]
- Kazımoğlu, S.; Deniz, E.; Srivastava, H.M. Sharp Coefficient Bounds for Starlike Functions Associated with Gregory Coefficients. Complex Anal. Oper. Theory 2024, 18(1), 6. [CrossRef]
- Tang, H.; Mujahid, Z.; Khan, N.; Tchier, F.; Ghaffar Khan, M. Generalized Bounded Turning Functions Connected with Gregory Coefficients. Axioms 2024, 13(6), 359. [CrossRef]
- Srivastava, H.M.; Cho, N.E.; Alderremy, A.A.; Lupas, A.A.; Mahmoud, E.E.; Khan, S. Sharp inequalities for a class of novel convex functions associated with Gregory polynomials. J. Inequal. Appl. 2024, 2024, 140. [CrossRef]
- Akgül, A. On a New Subclass of Bi-univalent Analytic Functions Characterized by (P, Q)-Lucas Polynomial Coefficients via Sălăgean Differential Operator. In Operators, Inequalities and Approximation: Theory and Applications; Tripathy, B.C.; Paikray, S.K.; Dutta, H.; Jena, B.B., Eds.; Springer Nature: Singapore, 2024; pp. 159–182. [CrossRef]
- Orhan H, Aktaş I, Arikan H. On a new subclass of biunivalent functions associated with the (p,q)-Lucas polynomials and bi-Bazilevic type functions of order ρ+iξ. Turk. J. Math. 2023, 47(1),98-109. [CrossRef]
- Behera, A.; Panda, G.K. On the Square Roots of Triangular Numbers. Fibonacci Q. 1999, 37, 98–105.
- Panda, G.K. Some Fascinating Properties of Balancing Numbers. Congr. Numer. 2009, 194, 185–189.
- Ray, P.K. Balancing and Cobalancing Numbers; Ph.D. Thesis, Department of Mathematics, National Institute of Technology, Rourkela, India, 2009.
- Patel, B.K.; Irmak, N.; Ray, P.K. Incomplete Balancing and Lucas-Balancing Numbers. Math. Rep. 2018, 20, 59–72.
- Davala, R.K.; Panda, G.K. On Sum and Ratio Formulas for Balancing Numbers. J. Indian Math. Soc. (N.S.) 2015, 82(12), 23–32.
- Komatsu, T.; Panda, G.K. On Several Kinds of Sums of Balancing Numbers. Ars Comb. 2020, 153, 127–147.
- Ray, P.K. Some Congruences for Balancing and Lucas-Balancing Numbers and Their Applications. Integers 2014, 14, Article A08, 8 pages.
- Ray, P.K. Balancing and Lucas-Balancing Sums by Matrix Methods. Math. Rep. (Bucharest) 2015, 17, 225–233.
- Ray, P.K. On the Properties of k-Balancing Numbers. Ain Shams Eng. J. 2018, 9, 395–402. [CrossRef]
- Frontczak, R. A Note on Hybrid Convolutions Involving Balancing and Lucas-Balancing Numbers. Appl. Math. Sci. 2018, 12, 1201–1208.
- Frontczak, R. Sums of Balancing and Lucas-Balancing Numbers with Binomial Coefficients. Int. J. Math. Anal. 2018, 12, 585–594. [CrossRef]
- Frontczak, R. On Balancing Polynomials. Appl. Math. Sci. 2019, 13, 57–66. [CrossRef]
- Keskin, R.; Karaatlı, O. Some New Properties of Balancing Numbers and Square Triangular Numbers. J. Integer Seq. 2012, 15(1), Article 12.1.4, 13 pages.
- R.Öztürk and I. Aktaş, Coefficient estimates for two new subclasses of bi-univalent functions defined by Lucas-Balancing polynomials, Turkish J. Ineq. 2023, 7(1), 55-64.
- Hussen, A.; Illafe, M. Coefficient Bounds for a Certain Subclass of Bi-Univalent Functions Associated with Lucas-Balancing Polynomials. Mathematics 2023, 11(24), 4941. [CrossRef]
- Aktaş I . and Karaman I , On Some New Subclasses of Bi-Univalent Functions Defined by Balancing Polynomials, KMU Journal of Engineering and Natural Sciences 2023, 5 (1) , 25-32. [CrossRef]
- Akgül, A. Coefficient Estimates of a New Bi-Univalent Function Class Introduced by Lucas-Balancing Polynomial. Int. J. Open Probl. Comput. Math. 2023, 16(3), 37–47.
- Akgül, A. Initial Coefficient Estimates of Bi-Univalent Functions Linked with Balancing Coefficients. WSEAS Trans. Math. 2023, 22, 792–797.
- Saravanan, G.; Baskaran, S.; Vanithakumari, B.; Bulut, S. Sakaguchi Type Functions Defined by Balancing Polynomials. Math. Bohem. 2025, 150(1), 71–83. [CrossRef]
- Swamy, S.R.; Breaz, D.; Venugopal, K.; Kempegowda, M.P.; Cotîrlă, L.I.; Răpeanu, E. Initial Coefficient Bounds Analysis for Novel Subclasses of Bi-Univalent Functions Linked with Lucas-Balancing Polynomials. Mathematics 2024, 12(9), 1325. [CrossRef]
- Murugusundaramoorthy G, Cotîrlă LI, Breaz D, El-Deeb SM. Applications of Lucas Balancing Polynomial to Subclasses of Bi-Starlike Functions. Axioms 2025, 14(1),50. [CrossRef]
- Hussen, A.; Madi, M.S.; Abominjil, A.M. Bounding coefficients for certain subclasses of bi-univalent functions related to Lucas-Balancing polynomials.AIMS Mathematics 2024, 9(7), 18034–18047. DOI: https://. [CrossRef]
- Hussen, A.; Illafe, M.; Zeyani, A. Fekete–Szegö and Second Hankel Determinant for a Certain Subclass of Bi-Univalent Functions Associated with Lucas-Balancing Polynomials.Int. J. Neutrosophic Sci. 202525, 417–434. DOI: https://. [CrossRef]
- Hussen, A.; Alamari, M.M. Bounds on Coefficients for a Subclass of Bi-Univalent Functions with Lucas-Balancing Polynomials and Ruscheweyh Derivative Operator. Int. J. Math. Comput. Sci. 202419 (4), 1237–1249.
- Buyankara, M.; Çağlar, M. Coefficient Inequalities for Two New Subclasses of Bi-Univalent Functions Involving Lucas–Balancing Polynomials. East. Anatol. J. Sci. 2024, 10(2), 5-11.
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).