Submitted:
30 May 2025
Posted:
04 June 2025
You are already at the latest version
Abstract
Keywords:
1. Introduction
2. Functors of Actions Theories (FAT)
2.1. A Specific Quadratic FAT Model
2.2. A Specific Generic Function FAT Model
3. Oscillator Modelling
3.1. Classical Harmonic Oscillator
3.2. FAT Simple Harmonic Oscillator
3.3. FAT Oscillator in Gravity: Model
3.4. FAT Oscillator in Gravity: Model
4. Foundational Analysis of FAT: Locality and Consistency
4.1. Equations of Motion and Nonlocality
4.2. Causality
4.3. Boundary Value Problem
4.4. Correspondence with GR
4.5. Local Invariance
4.6. Linearized Einstein Field Equations
4.7. Conclusion
5. Local Invariance Resolution
6. Non-Locality in Quadratic FAT
7. Suppressing Non-Locality
8. Viability summary for FAT gravitational cosmology models
9. Integro-differential equations solutions of FAT cosmology
9.1. The Integral and the Constant of the FAT Term
9.2. The Integro-Differential Equation of Quadratic FAT Gravity
9.3. Numerical Solution of Quadratic FAT Gravity
- , the Hubble constant today, matching the initial condition .
- , the matter density parameter (dimensionless).
- , the radiation density parameter (dimensionless).
- , the dark energy density parameter (dimensionless), ensuring flatness.
- : Using the previous adjustment, (dimensionless), assuming , , , and .
9.4. The Integro-Differential Equation of Exponential FAT Gravitational Cosmology
9.5. Numerical Solution of Exponential FAT Gravitational Cosmology
10. Path Integral Approximations
10.1. Partition Function in Modified Gravity
10.2. Partition Function: Model A
11. Field Theory Expansion
11.1. Traditional Quantum Field Theory
11.2. FAT Quantum Field Theory
11.3. FAT Quantum Gravity via Partition Functor
12. Expectation Value of Universal Information in FAT
13. Generalized Stationary Action Principle
14. Five Fundamental Field-Particles
14.1. Diagrammatical Description of 5 Fundamental Entities
14.2. Discussion and Interpretation
15. Conclusions and Discussion
Funding
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
| MDPI | Multidisciplinary Digital Publishing Institute |
| DOAJ | Directory of open access journals |
| TLA | Three letter acronym |
| LD | Linear dichroism |
Appendix A. Symbols and Notation
- A: Amplitude parameter for the exponential FAT gravity model term, dimensionless.
- : Scale factor, dimensionless.
- c: Speed of light, .
- : Sound speed, normalised.
- d: Total number of fields in the vector field , where .
- f: Generic functor function applied to the action, e.g., .
- g: Gravitational acceleration or determinant of the metric tensor (context-dependent).
- : Metric tensor.
- : Metric field components in the vector field , .
- : Gravitational constant, .
- : Green’s function.
- H: Hubble parameter, , in or (context-dependent).
- : Hubble constant, or (context-dependent).
- : Integral term in FAT gravity models, , dimensionless.
- k: Spring constant or four-momentum (context-dependent).
- : Constant in FAT gravity models, , dimensionless.
- m: Oscillator mass or index denoting the number of metric fields in (context-dependent).
- n: Number of matter fields in .
- : Order of partial derivative with respect to in Taylor expansion, .
- R: Ricci scalar.
- : Action as a functional of the vector field .
- : Einstein-Hilbert action term.
- : Matter action term.
- : Cosmological constant term.
- : Euclidean action or entropy (context-dependent).
- : Stress-energy tensor.
- : Component i of the vector field , including metric () and matter () fields.
- : Reference value of field at which the action is evaluated.
- : Vector field combining metric and matter fields, .
- : Reference configuration of the vector field .
- : Matter Lagrangian density.
- : all matter field, described in the standard model of particle physics.
- : Fluctuation operator.
- : Spatial volume, .
- : Partition function.
- : FAT coupling constants.
- : Dirac delta, D-dimensional.
- : Variation of the action from reference .
- : Perturbation of field from its reference value, .
- : Metric perturbations (spatial and temporal).
- : Action fluctuation.
- : Entropy fluctuation.
- : probability of an event fluctuation.
- : Reduced gravitational constant, .
- : -th partial derivative with respect to .
- : Matter field components in , .
- : Fluctuation field.
- : Matter energy density at present time, in or dimensionless (context-dependent).
- : Radiation energy density at present time, in or dimensionless (context-dependent).
- : Dark energy density at present time, in or dimensionless (context-dependent).
- : Matter density parameter, dimensionless.
- : Radiation density parameter, dimensionless.
- : Dark energy density parameter, dimensionless.
- □: d’Alembertian, .
- ℏ: Reduced Planck constant.
- : Angular frequency, .
- : Initial position and velocity.
Appendix B. Zeta-Function Regularization on d’Alembertian
Appendix C. Zeta-Function in FLRW Metric
References
- Aghanim, N., et al. (2018). Planck 2018 results. VI. Cosmological parameters. arXiv:1807.06209.
- Platania, A., et al. (2024). Visions in Quantum Gravity. arXiv:gr-qc/2412.08696.
- Akrami, Y. et al. (2021). Modified Gravity and Cosmology: An Update by the CANTATA Network. Springer, arXiv:gr-qc/2105.12582.
- Valentino, E. D., Said, J. L., Ntelis, P., et al. (2025). The CosmoVerse White Paper: Addressing observational tensions in cosmology with systematics and fundamental physics. Physics of the Dark Universe.
- Euclid Collaboration et al. (2024). Euclid. I. Overview of the Euclid mission. Astronomy & Astrophysics, arXiv:astro-ph.CO/2405.13491. arXiv:astro-ph.CO/2405.13491.
- Karaçaylı, G., Ntelis, P., et al. (2022). Optimal 1D Lyα Forest Power Spectrum Estimation – II. KODIAQ, SQUAD & XQ-100. Monthly Notices of the Royal Astronomical Society, arXiv:astro-ph.CO/2108.10870.
- Hamaus, N., Ntelis, P., et al. (2022). Euclid: Forecasts from redshift-space distortions and the Alcock-Paczynski test with cosmic voids. Astronomy & Astrophysics, arXiv:astro-ph.CO/2108.10347.
- Ilić, S., Ntelis, P., et al. (2021). Euclid preparation: XV. Forecasting cosmological constraints for the Euclid and CMB joint analysis. Astronomy & Astrophysics, arXiv:astro-ph.CO/2106.08346.
- Alam, S., Ntelis, P., et al. (2020). Towards testing the theory of gravity with DESI: summary statistics, model predictions and future simulation requirements. Journal of Cosmology and Astroparticle Physics, arXiv:astro-ph.CO/2011.05771.
- Tutusaus, I., Ntelis, P., et al. (2020). Euclid: The importance of galaxy clustering and weak lensing cross-correlations within the photometric Euclid survey. Astronomy & Astrophysics, 643, URL.
- Ntelis, P., Ealet, A., Escoffier, S., et al. (2018). The scale of cosmic homogeneity as a standard ruler. Journal of Cosmology and Astroparticle Physics, 2018, URL.
- Blanton, M. R., Ntelis, P., et al. (2017). Sloan Digital Sky Survey IV: Mapping the Milky Way, Nearby Galaxies, and the Distant Universe. The Astronomical Journal, 154, URL.
- Ntelis, P., et al. (2017). Exploring cosmic homogeneity with the BOSS DR12 galaxy sample. Journal of Cosmology and Astroparticle Physics, 2017, URL.
- Laurent, P., Ntelis, P., et al. (2016). A 14 h-3 Gpc3 study of cosmic homogeneity using BOSS DR12 quasar sample. Journal of Cosmology and Astroparticle Physics, 2016, URL.
- Ntelis, P., & Said, J. L. (2025). Exploring ϕCDM model dynamics. European Physical Journal C, arXiv:gr-qc/2502.03486>.
- Ntelis, P., & Said, J. L. (2025). Simple ϕΛCDM dynamics. International Journal of Geometric Methods in Modern Physics, URL.
- Ezquiaga, J. M., & Zumalacárregui, M. (2018). Dark Energy in light of Multi-Messenger Gravitational-Wave astronomy. Frontiers in Astronomy and Space Sciences, 5:44, arXiv:astro-ph.CO/1807.09241.
- Bahamonde, S., et al. (2018). Dynamical systems applied to cosmology: dark energy and modified gravity. Phys. Rept., 775-777:1-122, arXiv:gr-qc/1712.03107.
- Bahamonde, S., et al. (2021). Cosmological perturbations in modified teleparallel gravity models: Boundary term extension. Eur. Phys. J. C, 81:53, arXiv:gr-qc/2009.02168.
- P. Ntelis and J. Levi Said, “Exploring ϕCDM model dynamics,” Eur. Phys. J. C 85 (2025) no.2, 218 doi:10.1140/epjc/s10052-025-13920-9 [arXiv:2502.03486 [gr-qc]].
- Ntelis, P., & Jackson, L. S. (2025). Simple ϕΛCDM model dynamics. Accepted in IJGMMP.
- Bahamonde, S., & Valcarcel, J. G. (2021). Observational constraints in metric-affine gravity. Eur. Phys. J. C, 81:495, arXiv:gr-qc/2103.12036.
- Aoki, K., et al. (2023). Cosmological Perturbation Theory in Metric-Affine Gravity. arXiv:gr-qc/2310.16007.
- Bahamonde, S., et al. (2023). Teleparallel gravity: from theory to cosmology. Rept. Prog. Phys., 86:026901, arXiv:gr-qc/2106.13793.
- Ntelis, P., & Morris, A. (2023). Functors of Actions. Foundations of Physics, 53:29.
- Ntelis, P. (2024). New avenues and observational constraints on functors of actions theories. PoS, EPS-HEP2023:104.
- Ntelis, P., & Jackson, L. S. (2024). A quadratic FAT ΛCDM dynamics. Under review.
- Ezquiaga, J. M., & Zumalacárregui, M. (2018). Dark Energy in light of Multi-Messenger Gravitational-Wave astronomy. Frontiers in Astronomy and Space Sciences, 5:44, arXiv:astro-ph.CO/1807.09241.
- Porto, R. A. (2016). The effective field theorist’s approach to gravitational dynamics. Physics Reports, 633:1-104, arXiv:hep-th/1601.04914.
- Clifton, T., et al. (2012). Modified gravity and cosmology. Physics Reports, 513:1-189, arXiv:astro-ph.CO/1106.2476.
- Perenon, L., et al. (2017). Diagnostic of Horndeski theories. Journal of Cosmology and Astroparticle Physics, 2017:035.
- Einstein, A. (1917). Kosmologische und relativitatstheorie. SPA der Wissenschaften, 142.
- Ntelis, P., Advancing Tensor Theories, Symmetry 17, 777 (2025). [CrossRef]
- Higgs, P. W. (1964). Broken Symmetries and the Masses of Gauge Bosons. Phys. Rev. Lett., 13:508–509. [CrossRef]
- Weinberg, S. (1967). A Model of Leptons. Phys. Rev. Lett., 19:1264–1266. [CrossRef]
| 1 | Rearranging and abbreviating the concepts to Probablon-Informaton-Spaciallion-Timion-Actionion (PISTA), we get PISTA which is the protoindoeuropean word for track. Therefore effectively we can think of these 5 fundamental field-particles as the track, i.e. PISTA, in which all fundamental particles are created in. |



| Entity | Fluctuation Description | Governing Equations |
|---|---|---|
| Probablon | : probability fluctuations | 0 |
| Informaton | : entropy fluctuations | |
| Spaciallion | : spatial geometry | |
| Timion | : temporal geometry | |
| Actionion | : actionic fluctuations |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).