Submitted:
30 December 2024
Posted:
31 December 2024
You are already at the latest version
Abstract
Keywords:
1. Introduction
2. Materials and Methods
2.1. Study Design and Setting
2.2. Statistical Analysis
3. Results
3.1. Study Population
3.2. Multivariable Analysis
3.3. Adverse Prenatal and Early Postnatal Infant Outcomes
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
| BAEP | Brainstem Auditory Evoked Potentials |
| CI | Confidence interval |
| CNS | Central Nervous System |
| CZS | Congenital Zika Syndrome |
| FORMSUS | Formulário do Sistema Único de Saúde (Unified Health System Form) |
| GAL | Gerenciador de Ambiente Laboratorial (Laboratory Environment Manager) |
| IQR | Interquartile range |
| OR | Odds ratio |
| PRNT | Plaque Reduction Neutralization Test |
| R2 | R squared |
| RESP | Registro de Eventos em Saúde Pública (Public Health Events Registry) |
| RT-PCR | Real-time reverse-transcriptase-polymerase-chain-reaction |
| SIM | Sistema de Informações sobre Mortalidade (Mortality Information System) |
| SINASC | Sistema de Informações sobre Nascidos Vivos (Live Birth Information System) |
| ZIKV | Zika virus |
References
- Cauchemez S, Besnard M, Bompard P, et al. Association between Zika virus and microcephaly in French Polynesia, 2013-15: a retrospective study. Lancet 2016, 387, 2125–32. [Google Scholar] [CrossRef]
- de Oliveira WK, de França GVA, Carmo EH, et al. Infection-related microcephaly after the 2015 and 2016 Zika virus outbreaks in Brazil: a surveillance-based analysis. Lancet 2017, 390, 861–70. [Google Scholar] [CrossRef]
- de Magalhaes-Barbosa MC, Prata-Barbosa A, Robaina JR, et al. prevalence of microcephaly in eight south-eastern and midwestern Brazilian neonatal intensive care units: 2011-2015. Arch Dis Child 2017, 102, 728–34. [Google Scholar] [CrossRef] [PubMed]
- Pan American Health Organization. Zika cases and congenital syndrome associated with Zika virus reported by countries and territories in the Americas, 2015–2018: Cumulative cases – Data as of 4 January 2018. Available online: https://www.paho.org/en/node/60231 (accessed on 23 Dec 2024).
- Musso D, Ko AI, Baud D. Zika Virus Infection — After the Pandemic. N Engl J Med 2019, 381, 1444–57. [Google Scholar] [CrossRef]
- Grubaugh ND, Saraf S, Gangavarapu K, et al. Travel Surveillance and Genomics Uncover a Hidden Zika Outbreak during the Waning Epidemic. Cell 2019, 178, 1057–1071.e11. [Google Scholar] [CrossRef] [PubMed]
- Haby MM, Pinart M, Elias V, et al. Systematic Systematic reviews prevalence of asymptomatic Zika virus infection : a systematic review. Bull World Health Organ 2018, 96, 402–413D. [Google Scholar] [CrossRef] [PubMed]
- Guanche Garcell H, Gutiérrez García F, Ramirez Nodal M, et al. Clinical relevance of Zika symptoms in the context of a Zika Dengue epidemic. J Infect Public Health 2020, 13, 173–6. [Google Scholar] [CrossRef]
- Tozetto-Mendoza TR, Avelino-Silva VI, Fonseca S, et al. Zika virus infection among symptomatic patients from two healthcare centers in Sao Paulo State, Brazil: Prevalence, clinical characteristics, viral detection in body fluids and serodynamics. Rev Inst Med Trop Sao Paulo 2019, 61, 1–9. [Google Scholar] [CrossRef]
- Sousa IBA de, Souza C, Barbosa M dos S, et al. Gestational outcomes in women infected by Zika virus during pregnancy in Mato Grosso do Sul, Brazil: A cross-sectional study. Int J Infect Dis 2020, 98, 359–65. [Google Scholar] [CrossRef] [PubMed]
- Brasil P, Calvet GA, Siqueira AM, et al. Zika Virus Outbreak in Rio de Janeiro, Brazil: Clinical Characterization, Epidemiological and Virological Aspects. PLoS Negl Trop Dis 2016, 10, 1–13. [Google Scholar] [CrossRef]
- Conners EE, Lee EH, Thompson CN, et al. Zika virus infection among pregnant women and their neonates in New York City, January 2016–June 2017. Obstet Gynecol 2018, 132, 487–95. [Google Scholar] [CrossRef] [PubMed]
- Halai UA, Nielsen-Saines K, Moreira ML, et al. Maternal Zika virus disease severity, virus load, prior dengue antibodies, and their relationship to birth outcomes. Clin Infect Dis 2017, 65, 877–83. [Google Scholar] [CrossRef] [PubMed]
- Hoen B, Schaub B, Funk AL, et al. Pregnancy Outcomes after ZIKV Infection in French Territories in the Americas. N Engl J Med 2018, 378, 985–94. [Google Scholar] [CrossRef] [PubMed]
- Mulkey SB, Bulas DI, Vezina G, et al. Sequential Neuroimaging of the Fetus and Newborn with In Utero Zika Virus Exposure. JAMA Pediatr 2019, 173, 52–9. [Google Scholar] [CrossRef]
- Pomar L, Malinger G, Benoist G, et al. Association between Zika virus and fetopathy: a prospective cohort study in French Guiana. Ultrasound Obstet Gynecol 2017, 49, 729–36. [Google Scholar] [CrossRef]
- Rodriguez-Morales AJ, Cardona-Ospina JA, Ramirez-Jaramillo V, et al. Diagnosis and outcomes of pregnant women with Zika virus infection in two municipalities of Risaralda, Colombia: Second report of the ZIKERNCOL study. Travel Med Infect Dis 2018, 25, 20–5. [Google Scholar] [CrossRef] [PubMed]
- Braga JU, Bressan C, Dalvi APR, et al. Accuracy of Zika virus disease case definition during simultaneous Dengue and Chikungunya epidemics. PLoS One 2017, 12, e0179725–e0179725. [Google Scholar] [CrossRef]
- Mitchell PK, Mier-y-Teran-Romero L, Biggerstaff BJ, et al. Reassessing Serosurvey-Based Estimates of the Symptomatic Proportion of Zika Virus Infections. Am J Epidemiol 2018, 188, 206–13. [Google Scholar] [CrossRef]
- Meneses J do A, Ishigami AC, de Mello LM, et al. Lessons Learned at the Epicenter of Brazil’s Congenital Zika Epidemic: Evidence From 87 Confirmed Cases. Clin Infect Dis 2017, 64, 1302–8. [Google Scholar] [CrossRef] [PubMed]
- Vianna RA de O, Rua EC, Fernandes AR, et al. Experience in diagnosing congenital Zika syndrome in Brazilian children born to asymptomatic mothers. Acta Trop 2020, 206, 105438. [Google Scholar] [CrossRef]
- UK Health Security Agency, England. Guidance on the investigation, diagnosis and management of viral illness (plus syphilis), or exposure to viral rash illness, in pregnancy. Available online: https://assets.publishing.service.gov.uk/media/66a90597a3c2a28abb50d9f6/viral-rash-in-pregnancy-guidance-syphilis-august-2024.pdf (accessed on 23 Dec 2024).
- Pan American Health Organization. Tool for the diagnosis and care of patients with suspected arboviral diseases. Washington D.C., PAHO 2017. Available online: https://iris.paho.org/handle/10665.2/33895 (accessed on 23 Dec 2024).
- Arragain L, Dupont-Rouzeyrol M, O’Connor O, et al. Vertical Transmission of Dengue Virus in the Peripartum Period and Viral Kinetics in Newborns and Breast Milk: New Data. J Pediatric Infect Dis Soc 2017, 6, 324–31. [Google Scholar] [CrossRef]
- Yang, HM. The transovarial transmission in the dynamics of dengue infection: Epidemiological implications and thresholds. Math Biosci 2017, 286, 1–15. [Google Scholar] [CrossRef] [PubMed]
- Contopoulos-Ioannidis D, Newman-Lindsay S, Chow C, et al. Mother-to-child transmission of Chikungunya virus: A systematic review and meta-analysis. PLoS Negl Trop Dis 2018, 12, e0006510. [Google Scholar] [CrossRef]
- Charlier C, Beaudoin M-C, Couderc T, et al. Arboviruses and pregnancy: maternal, fetal, and neonatal effects. Lancet Child Adolesc Health 2017, 1, 134–46. [Google Scholar] [CrossRef]
- Ramful D, Carbonnier M, Pasquet M, et al. Mother-to-child transmission of Chikungunya virus infection. Pediatr Infect Dis J 2007, 26, 811–5. [Google Scholar] [CrossRef] [PubMed]
- Gérardin P, Sampériz S, Ramful D, et al. Neurocognitive outcome of children exposed to perinatal mother-to-child Chikungunya virus infection: the CHIMERE cohort study on Reunion Island. PLoS Negl Trop Dis 2014, 8, e2996. [Google Scholar] [CrossRef]
- Campos Coelho AV, Crovella S. Microcephaly prevalence in infants born to zika virus-infected women: A systematic review and meta-analysis. Int J Mol Sci 2017, 18, 1–10. [Google Scholar] [CrossRef]
- Nithiyanantham SF, Badawi A. Maternal infection with Zika virus and prevalence of congenital disorders in infants: systematic review and meta-analysis. Can J Public Health 2019, 110, 638–48. [Google Scholar] [CrossRef] [PubMed]
- Einspieler C, Utsch F, Brasil P, et al. Association of Infants Exposed to Prenatal Zika Virus Infection with Their Clinical, Neurologic, and Developmental Status Evaluated via the General Movement Assessment Tool. JAMA Netw Open 2019, 2, e187235. [Google Scholar] [CrossRef] [PubMed]
- Mulkey SB, Arroyave-Wessel M, Peyton C, et al. Neurodevelopmental Abnormalities in Children with In Utero Zika Virus Exposure Without Congenital Zika Syndrome. JAMA Pediatr 2020, 174, 269–276. [Google Scholar] [CrossRef]
- Aspilcueta Gho. D, Benites Villafane C, Calderón Sánchez M, et al. Infección por zika en el Perú: de amenaza a problema de salud. Rev Peru Ginecol y Obstet 2017, 63, 57–64. [Google Scholar] [CrossRef]
- Honein MA, Dawson AL, Petersen EE, et al. Birth defects among fetuses and infants of US women with evidence of possible zika virus infection during pregnancy. JAMA, 2017, 317, 59–68. [Google Scholar] [CrossRef] [PubMed]
- Mendez N, Oviedo-Pastrana M, Mattar S, et al. Zika virus disease, microcephaly and Guillain-Barre syndrome in Colombia: epidemiological situation during 21 months of the Zika virus outbreak, 2015-2017. Arch Public Health 2017, 75, 65. [Google Scholar] [CrossRef] [PubMed]
- Ocampo Cañas JA, Caviedes Combita D, Molina Leon HF, et al. Patient characteristics and pregnancy outcomes among Zika-infected pregnant women: Epidemiologic surveillance data from two cities in Colombia, 2015–2016. Int J Gynecol Obstet 2020, 148, 4–8. [Google Scholar] [CrossRef] [PubMed]
- Coutinho CM, Negrini S, Araujo D, et al. Early maternal Zika infection predicts severe neonatal neurological damage: results from the prospective Natural History of Zika Virus Infection in Gestation cohort study. BJOG 2020, 128, 317–326. [Google Scholar] [CrossRef]
- Martines RB, Bhatnagar J, de Oliveira Ramos AM, et al. Pathology of congenital Zika syndrome in Brazil: a case series. Lancet 2016, 388, 898–904. [Google Scholar] [CrossRef] [PubMed]
- Tang H, Hammack C, Ogden SC, et al. Zika Virus Infects Human Cortical Neural Progenitors and Attenuates Their Growth. Cell Stem Cell 2016, 18, 587–90. [Google Scholar] [CrossRef] [PubMed]
- Gilmore EC, Walsh CA. Genetic causes of microcephaly and lessons for neuronal development. Wiley Interdiscip Rev Dev Biol 2013, 2, 461–78. [Google Scholar] [CrossRef]
- Garcez PP, Loiola EC, Da Costa RM, et al. Zika virus: Zika virus impairs growth in human neurospheres and brain organoids. Science 2016, 352, 816–8. [Google Scholar] [CrossRef]
- Reynolds MR, Jones AM, Petersen EE, et al. Vital Signs: Update on Zika Virus–Associated Birth Defects and Evaluation of All U.S. Infants with Congenital Zika Virus Exposure - U.S. Zika Pregnancy Registry, 2016. MMWR Morb Mortal Wkly Rep 2017, 66, 366–73. [Google Scholar] [CrossRef]
- Rice ME, Galang RR, Roth NM, et al. Vital Signs: Zika-Associated Birth Defects and Neurodevelopmental Abnormalities Possibly Associated with Congenital Zika Virus Infection - U.S. Territories and Freely Associated States, 2018. MMWR Morb Mortal Wkly Rep 2018, 67, 858–67. [Google Scholar] [CrossRef]
- Brasil P, Vasconcelos Z, Kerin T, et al. Zika virus vertical transmission in children with confirmed antenatal exposure. Nat Commun 2020, 11, 3510. [Google Scholar] [CrossRef] [PubMed]
- Venturi G, Fortuna C, Alves RM, et al. Epidemiological and clinical suspicion of congenital Zika virus infection: Serological findings in mothers and children from Brazil. J Med Virol 2019, 91, 1577–83. [Google Scholar] [CrossRef]
- Cordeiro MT, Brito CAA, Pena LJ, et al. Results of a Zika Virus (ZIKV) Immunoglobulin M-Specific Diagnostic Assay Are Highly Correlated With Detection of Neutralizing Anti-ZIKV Antibodies in Neonates With Congenital Disease. J Infect Dis 2016, 214, 1897–904. [Google Scholar] [CrossRef] [PubMed]
- de Araujo TVB, Ximenes RA de A, Miranda-Filho D de B, et al. Association between microcephaly, Zika virus infection, and other risk factors in Brazil: final report of a case-control study. Lancet Infect Dis 2018, 18, 328–36. [Google Scholar] [CrossRef]
- Radaelli G, Lahorgue Nunes M, Bernardi Soder R, et al. Review of neuroimaging findings in congenital Zika virus syndrome and its relation to the time of infection. Neuroradiol J 2020, 33, 152–157. [Google Scholar] [CrossRef]
- Sanders Pereira Pinto P, de Almeida TM, Monteiro L, et al. Brain abnormalities on neuroimaging in Children with Congenital Zika Syndrome in Salvador, Brazil, and its possible implications on neuropsychological development. Int Soc Dev Neurosci 2020, 80, 189–96. [Google Scholar] [CrossRef] [PubMed]
- Niemeyer B, Hollanda R, Muniz B, et al. What We Can Find Beyond the Classic Neuroimaging Findings of Congenital Zika Virus Syndrome? Eur Neurol 2020, 83, 17–24. [Google Scholar] [CrossRef] [PubMed]
- Fox NS, Monteagudo A, Kuller JA, et al. Mild fetal ventriculomegaly: diagnosis, evaluation, and management. Am J Obstet Gynecol 2018, 219, B2–B9. [Google Scholar] [CrossRef] [PubMed]
- Peloggia A, Ali M, Nanda K, et al. Zika virus exposure in pregnancy and its association with newborn visual anomalies and hearing loss. Int J Gynaecol Obstet 2018, 143, 277–81. [Google Scholar] [CrossRef] [PubMed]
- Fernandez MP, Parra Saad E, Ospina Martinez M, et al. Ocular Histopathologic Features of Congenital Zika Syndrome. JAMA Ophthalmol 2017, 135, 1163–9. [Google Scholar] [CrossRef] [PubMed]
- de Paula Freitas B, de Oliveira Dias JR, Prazeres J, et al. Ocular Findings in Infants with Microcephaly Associated with Presumed Zika Virus Congenital Infection in Salvador, Brazil. JAMA Ophthalmol 2016, 134, 529–35. [Google Scholar] [CrossRef]
- Marquezan MC, Ventura C V, Sheffield JS, et al. Ocular effects of Zika virus - a review. Surv Ophthalmol 2018, 63, 166–73. [Google Scholar] [CrossRef] [PubMed]
- de Vries, LS. Viral Infections and the Neonatal Brain. Semin Pediatr Neurol 2019, 32, 100769. [Google Scholar] [CrossRef]
- O’Connor AR, Wilson CM, Fielder AR. Ophthalmological problems associated with preterm birth. Eye 2007, 21, 1254–60. [Google Scholar] [CrossRef] [PubMed]
- Barbosa MH de M, Magalhães-Barbosa MC de, Robaina JR, et al. Auditory findings associated with Zika virus infection: an integrative review. Braz J Otorhinolaryngol 2019, 85, 642–63. [Google Scholar] [CrossRef]
- Korver AMH, Smith RJH, Van Camp G, et al. Congenital hearing loss. Nat Rev Dis Prim 2017, 3, 16094. [Google Scholar] [CrossRef] [PubMed]
- Serpa SC, de Melo ACMG, Gomes Lins O, et al. Orthopedic findings in arthrogryposis and congenital Zika syndrome: A case series. Birth Defects Res 2020, 112, 385–92. [Google Scholar] [CrossRef]
- Schuler-Faccini L, Ribeiro EM, Feitosa IML, et al. Possible Association Between Zika Virus Infection and Microcephaly — Brazil, 2015. MMWR Morb Mortal Wkly Rep 2016, 65, 59–62. [Google Scholar] [CrossRef] [PubMed]
- van der Linden V, Filho ELR, Lins OG, et al. Congenital Zika syndrome with arthrogryposis: retrospective case series study. BMJ 2016, 354, i3899. [Google Scholar] [CrossRef]
- Chimelli L, Moura Pone S, Avvad-Portari E, et al. Persistence of Zika Virus After Birth: Clinical, Virological, Neuroimaging, and Neuropathological Documentation in a 5-Month Infant with Congenital Zika Syndrome. J Neuropathol Exp Neurol 2018, 77, 193–8. [Google Scholar] [CrossRef] [PubMed]
- Chimelli L, Avvad-Portari E. Congenital Zika virus infection: a neuropathological review. Child’s Nerv Syst 2017, 34, 95–99. [Google Scholar] [CrossRef]
| Signs and symptoms | ZIKV+ n (%) |
ZIKV- n (%) |
p-value1 |
|---|---|---|---|
| Rash | 1899 (83.7) | 4477 (79.9) | 0.0001 |
| Pruritus | 1391 (61.3) | 2656 (47.4) | <0.001 |
| Headache | 636 (28.0) | 1943 (34.7) | <0.001 |
| Arthralgia | 596 (26.3) | 2196 (39.2) | <0.001 |
| Myalgia | 476 (20.1) | 1670 (29.8) | <0.001 |
| Fever | 379 (16.7) | 1862 (33.2) | <0.001 |
| Retro-ocular pain | 322 (14.2) | 835 (14.9) | 0.1164 |
| Conjunctival hyperemia | 195 (8.6) | 414 (7.4) | 0.2216 |
| Edema | 187 (8.2) | 552 (9.6) | 0.0053 |
| Conjunctivitis | 90 (4.0) | 210 (3.7) | 0.9846 |
| Coryza | 68 (3.6) | 237 (5.3) | 0.0041 |
| Cough | 79 (3.5) | 236 (4.2) | 0.0704 |
| Diarrhea | 127 (3.0) | 337 (6.0) | 0.2595 |
| Lymphadenomegaly | 49 (2.2) | 107 (1.9) | 0.718 |
| ZIKV+ | ZIKV- | p-value1 | |
|---|---|---|---|
| Pregnant women | 2269 | 5601 | |
| Outcomes | 49 | 44 | <0.001 |
| Prevalence | 2.6% | 0.78% | |
| 1st trimester | |||
| Pregnant women | 508 | 1 205 | |
| Outcomes | 28 | 19 | <0.001 |
| Prevalence | 5.5% | 1.6% | |
| 2nd trimester | |||
| Pregnant women | 997 | 1 941 | |
| Outcomes | 15 | 7 | 0.0015 |
| Prevalence | 1.5% | 0.36% | |
| 3rd trimester | |||
| Pregnant women | 764 | 2 455 | |
| Outcomes | 6 | 18 | 1.0 |
| Prevalence | 0.79% | 0.73% |
| ZIKV+ n (%) |
ZIKV- n (%) |
p-value1 | |
|---|---|---|---|
| Total | 2269 | 5601 | |
| Age [median (IQR)] | 26 (21-31) | 26 (21-31) | 0.233* |
| Ethnicity/race | |||
| White | 945 (44.6) | 2197 (42.8) | 0.168 |
| Others | 1176 (55.4) | 2937 (57.2) | |
| Missing | 148 | 467 | |
| Place of residence | |||
| Not urban | 352 (15.5) | 765 (13.7) | < 0.001 |
| Urban | 1917 (84.5) | 4836 (86.3) | |
| Marital status | |||
| Single | 1019 (70.0) | 2398 (72.2) | 0.402 |
| Married | 411 (28.2) | 872 (26.3) | |
| Widowed | 3 (0.2) | 4 (0.1) | |
| Divorced | 23 (1.6) | 46 (1.4) | |
| Prevalence | 1.5% | 0.36% | |
| Missing | 148 | 467 | |
| Education | |||
| Elementary school | 289 (19.4) | 627 (18.4) | 0.331 |
| High school | 980 (65.6) | 2219 (65.0) | |
| Higher school | 224 (15.0) | 566 (16.6) | |
| Missing | 776 | 2189 | |
| Twin pregnancy | |||
| No | 1501 (99.1) | 3413 (98.7) | 0.181 |
| Yes | 13 (0.9) | 45 (1.3) | |
| Missing | 755 | 2143 | |
| Type of labor | |||
| Natural | 668 (44.1) | 1596 (46.2) | 0.179 |
| Cesarean section | 847 (55.9) | 1862 (53.8) | |
| Missing | 754 | 2143 | |
| Prenatal consultations | |||
| ≥ 6 | 1295 (86.9) | 2920 (85.8) | 0.318 |
| <6 | 196 (13.1) | 484 (14.2) | |
| Missing | 778 | 2 197 | |
| Need for hospitalization | |||
| No | 1686 (98) | 3810 (97.6) | 0.388 |
| Yes | 35 (2) | 94 (2.4) | |
| Missing | 548 | 1 697 |
| Predictors | OR | 95% CI | p-value |
|---|---|---|---|
| Exposure to ZIKV during pregnancy | 2.46 | 1.30-4.64 | 0.005 |
| Observations: 3463 pregnant women | |||
| R2 / R2 adjusted: 0.017/0.017 | |||
| Exposure to ZIKV during 1st trimester | 4.29 | 1.93-9.53 | <0.001 |
| Observations: 915 pregnant women | |||
| R2 / R2 adjusted: 0.049/0.047 | |||
| Exposure to ZIKV during 2nd trimester | 5.29 | 1.08-25.95 | 0.040 |
| Observations: 1793 pregnant women | |||
| R2 / R2 adjusted: 0.042/0.042 | |||
|
Exposure to ZIKV during 3rd trimester Observations: 915 pregnant womenR2 / R2 adjusted: 0.049/0.047 |
0.68 | 0.21-2.14 | 0.506 |
| ZIKV+ n (%) |
ZIKV- n (%) |
p-value1 | |
|---|---|---|---|
| Total | 49 | 44 | |
| Maternal age [median (IQR)] | 25 (21-29) | 23 (20-31) | 0.600 |
| Place of residence | |||
| Not urban | 40 (81.6) | 36 (81.8) | 0.982* |
| Urban | 9 (18.4) | 8 (18.2) | |
| Maternal ethnicity/race | |||
| White | 18 (40) | 17 (39.5) | |
| Others | 27 (60) | 25 (60.5) | 0.014** |
| Missing | 1 | 4 | |
| Fetus/newborn sex | |||
| Female | 22 (47.8) | 27 (67.5) | 0.066 |
| Male | 24 (52.2) | 13 (32.5) | |
| Missing | 3 | 4 | |
| Newborn birth length | |||
| cm [median (IQR)] | 45 (43,2-47,8) | 47 (44-48) | 0.505** |
| Newborn birth weight | |||
| g [median (IQR)] | 2640 (2402.5-2902.5) | 2637.5 (2120-2957.5) | 0.996** |
| Newborn head circumference | |||
| cm [median (IQR)] | 30 (28-31) | 29.2 (28-30,1) | 0.460** |
| Prematurity | |||
| No | 36 (83.7) | 37 (84.1) | 0.164* |
| Yes | 3 (7) | 4 (9.1) | |
| Not applicable | 4 (9.3) | 3 (6.8) | |
| Twinning | |||
| No | 49 (100) | 44 (100) | 1* |
| Yes | 0 | 0 |
| ZIKV+ n (%) |
ZIKV- n (%) |
p-value1 | |
|---|---|---|---|
| Total | 49 | 44 | |
| Fever | |||
| Yes | 6 (12.2) | 12 (27.3) | 0.067 |
| No | 43 (87.8) | 32 (72.7) | |
| Rash | |||
| Yes | 46 (93.9) | 35 (79.5) | 0.04 |
| No | 3 (6.1) | 9 (20.5) | |
| Arthralgia | |||
| Yes | 16 (32.7) | 16 (36.4) | 0.707 |
| No | 33 (67.3) | 28 (63.6) | |
| Headache | |||
| Yes | 14 (28.6) | 15 (34.1) | 0.566 |
| No | 35 (71.4) | 29 (65.9) | |
| Conjunctivitis | |||
| Yes | 3 (6.1) | 1 (2.3) | 0.619 |
| No | 46 (93.9) | 43 (97.7) | |
| Coryza | |||
| Yes | 1 (2) | 4 (9.1) | 0.186 |
| No | 48 (98) | 40 (90.9) | |
| Diarrhea | |||
| Yes | 4 (8.2) | 2 (4.5) | 0.68 |
| No | 45 (91.8) | 42 (95.5) | |
| Retro-ocular pain | |||
| Yes | 7 (14.3) | 5 (11,4) | 0.675 |
| No | 42 (85.7) | 39 (88.6) | |
| Edema | |||
| Yes | 2 (4.1) | 5 (11.4) | 0.249 |
| No | 47 (95.9) | 39 (88.6) | |
| Myalgia | |||
| Yes | 14 (28.6) | 10 (22.7) | 0.52 |
| No | 35 (71.4) | 34 (77.3) | |
| Lymphadenomegaly | |||
| Yes | 2 (4.1) | 0 | 0.496 |
| No | 47 (95.9) | 44 (100) | |
| Pruritus | |||
| Yes | 33 (67.3) | 20 (45.5) | 0.033 |
| No | 16 (32.7) | 24 (54.5) | |
| Cough | |||
| Yes | 0 | 1 (2.3) | 0.473 |
| No | 49 (100) | 43 (97.7) | |
| Fetal loss | |||
| Yes | 4 (9.1) | 5 (10.2) | 1* |
| No | 40 (90.9) | 44 (89.8) |
| ZIKV+ n (%) |
ZIKV- n (%) |
p-value1 | |
|---|---|---|---|
| Total | 49 | 44 | |
| CNS abnormalities: | |||
| Intracranial calcifications | 26 (74.3) | 15 (75) | 1 |
| Ventriculomegaly | 23 (65.7) | 19 (95) | 0.033 |
| Posterior fossa malformations | 6 (17.1) | 5 (25) | 0.723 |
| Reduced brain volume | 6 (17.1) | 4 (20) | 1 |
| Corpus callosum malformations | 6 (17.1) | 3 (15) | 1 |
| Cortex dysplasia | 6 (17.1) | 1 (5) | 0.379 |
| Lissencephaly | 4 (11.4) | 3 (15) | 1 |
| Pachygyria | 3 (8.6) | 1 (5) | 1 |
| Hydrops fetalis | 1 (2.9) | 0 | 1 |
| Cystic hygroma + encephalocele | 0 | 1 (5) | 0.775 |
| Semilobar holoprosencephaly | 0 | 1 (5) | 0.775 |
| Physical examination findings: | |||
| Arthrogryposis | 4 (8.2) | 0 | 0.154 |
| Congenital foot deformities | 1 (2) | 1 (2.3) | 1 |
| Esophageal atresia | 1 (2) | 0 | 1 |
| Cleft lip and palate | 0 | 1 (2.3) | 0.957 |
| Myelomeningocele | 0 | 1 (2.3) | 0.957 |
| Ophthalmologic examination: | |||
| Optic nerve hypoplasia | 4 (44.4) | 3 (30) | 0.514 |
| Incomplete vascularization | 1 (11.1) | 0 | 0.279 |
| Pigmentary abnormalities | 2 (22.2) | 0 | 0.115 |
| Retinal coloboma | 0 | 2 (20) | 0.156 |
| Chorioretinal atrophy | 0 | 1 (10) | 0.329 |
| Chorioretinitis | 0 | 1 (10) | 0.329 |
| Microphthalmia | 0 | 1 (10) | 0.329 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
