Submitted:
29 October 2024
Posted:
18 November 2024
You are already at the latest version
Abstract
Pfender \textit{[J. Combin. Theory Ser. A, 2007]} provided a one-line proof for a variant of the Delsarte-Goethals-Seidel-Kabatianskii-Levenshtein upper bound for spherical codes, which offers an upper bound for the celebrated (Newton-Gregory) kissing number problem. Motivated by this proof, we introduce the notion of codes in pointed metric spaces (in particular on Banach spaces) and derive a nonlinear (functional) Delsarte-Goethals-Seidel-Kabatianskii-Levenshtein-Pfender upper bound for spherical codes. We also introduce nonlinear (functional) Kissing Number Problem.
Keywords:
MSC: 94B65; 54E35
1. Introduction
- (i)
- for all .
- (ii)
-
Coefficients in the Gegenbauer expansionsatisfy
- (i)
- (ii)
- for all .
2. Metric Codes
- (i)
- for all .
- (ii)
- for all .
- (iii)
- for all .
- (iv)
- for all .
- (i)
- for all .
- (ii)
- for all .
- (iii)
- for all .
- (iv)
- for all .
Proposition 1.
- (i)
- (ii)
- for all .
- (i)
- (ii)
- for all .
References
- Chuanming Zong. Sphere packings. Universitext. Springer-Verlag, New York, 1999.
- Kurt M. Anstreicher. The thirteen spheres: a new proof. Discrete Comput. Geom., 31(4):613–625, 2004. [CrossRef]
- Christine Bachoc and Frank Vallentin. New upper bounds for kissing numbers from semidefinite programming. J. Amer. Math. Soc., 21(3):909–924, 2008. [CrossRef]
- Károly Böröczky. The Newton-Gregory problem revisited. In Discrete geometry, volume 253 of Monogr. Textbooks Pure Appl. Math., pages 103–110. Dekker, New York, 2003.
- Peter Boyvalenkov, Stefan Dodunekov, and Oleg Musin. A survey on the kissing numbers. Serdica Math. J. 2012. [CrossRef]
- Bill Casselman. The difficulties of kissing in three dimensions. Notices Amer. Math. Soc., 51(8):884–885, 2004.
- Alexey Glazyrin. A short solution of the kissing number problem in dimension three. Discrete Comput. Geom., 69(3):931–935, 2023. [CrossRef]
- Matthew Jenssen, Felix Joos, and Will Perkins. On kissing numbers and spherical codes in high dimensions. Adv. Math., 335:307–321, 2018. [CrossRef]
- Kenz Kallal, Tomoka Kan, and Eric Wang. Improved lower bounds for kissing numbers in dimensions 25 through 31. SIAM J. Discrete Math., 31(3):1895–1908, 2017. [CrossRef]
- N. A. Kuklin. Delsarte method in the problem on kissing numbers in high-dimensional spaces. Proc. Steklov Inst. Math., 284(1):S108–S123, 2014. [CrossRef]
- John Leech. The problem of the thirteen spheres. Math. Gaz., 40:22–23, 1956. [CrossRef]
- Leo Liberti. Mathematical programming bounds for kissing numbers. In Optimization and decision science: methodologies and applications, volume 217 of Springer Proc. Math. Stat., pages 213–222. Springer, Cham, 2017. [CrossRef]
- Fabrício Caluza Machado and Fernando Mário de Oliveira Filho. Improving the semidefinite programming bound for the kissing number by exploiting polynomial symmetry. Exp. Math., 27(3):362–369, 2018. [CrossRef]
- H. Maehara. The problem of thirteen spheres—a proof for undergraduates. European J. Combin., 28(6):1770–1778, 2007. [CrossRef]
- Hans D. Mittelmann and Frank Vallentin. High-accuracy semidefinite programming bounds for kissing numbers. Experiment. Math., 19(2):175–179, 2010. [CrossRef]
- Oleg R. Musin. The kissing problem in three dimensions. Discrete Comput. Geom., 35(3):375–384, 2006. [CrossRef]
- Oleg R. Musin. The kissing number in four dimensions. Ann. of Math. (2), 168(1):1–32, 2008. [CrossRef]
- A. M. Odlyzko and N. J. A. Sloane. New bounds on the number of unit spheres that can touch a unit sphere in n dimensions. J. Combin. Theory Ser. A, 26(2):210–214, 1979. [CrossRef]
- Florian Pfender. Improved Delsarte bounds for spherical codes in small dimensions. J. Combin. Theory Ser. A, 114(6):1133–1147, 2007. [CrossRef]
- Florian Pfender and Günter M. Ziegler. Kissing numbers, sphere packings, and some unexpected proofs. Notices Amer. Math. Soc., 51(8):873–883, 2004.
- K. Schütte and B. L. van der Waerden. Das Problem der dreizehn Kugeln. Math. Ann., 125:325–334, 1953. [CrossRef]
- Christine Bachoc and Frank Vallentin. Semidefinite programming, multivariate orthogonal polynomials, and codes in spherical caps. European J. Combin., 30(3):625–637, 2009. [CrossRef]
- Eiichi Bannai and Etsuko Bannai. A survey on spherical designs and algebraic combinatorics on spheres. European J. Combin., 30(6):1392–1425, 2009. [CrossRef]
- Eiichi Bannai and N. J. A. Sloane. Uniqueness of certain spherical codes. Canadian J. Math., 33(2):437–449, 1981. [CrossRef]
- Alexander Barg and Oleg R. Musin. Codes in spherical caps. Adv. Math. Commun., 1(1):131–149, 2007. [CrossRef]
- P. G. Boyvalenkov, P. D. Dragnev, D. P. Hardin, E. B. Saff, and M. M. Stoyanova. Universal lower bounds for potential energy of spherical codes. Constr. Approx., 44(3):385–415, 2016. [CrossRef]
- P. G. Boyvalenkov, P. D. Dragnev, D. P. Hardin, E. B. Saff, and M. M. Stoyanova. Bounds for spherical codes: the Levenshtein framework lifted. Math. Comp., 90(329):1323–1356, 2021. [CrossRef]
- Peter Boyvalenkov and Danyo Danev. On maximal codes in polynomial metric spaces. In Applied algebra, algebraic algorithms and error-correcting codes, volume 1255 of Lecture Notes in Comput. Sci., pages 29–38. Springer, Berlin, 1997.
- Peter Boyvalenkov, Danyo Danev, and Ivan Landgev. On maximal spherical codes. II. [CrossRef]
- Henry Cohn, Yang Jiao, Abhinav Kumar, and Salvatore Torquato. Rigidity of spherical codes. Geom. Topol., 15(4):2235–2273, 2011. [CrossRef]
- J. H. Conway and N. J. A. Sloane. Sphere packings, lattices and groups. Springer-Verlag, New York, 1999. 1999.
- P. Delsarte, J. M. Goethals, and J. J. Seidel. Spherical codes and designs. Geometriae Dedicata, 6(3):363–388, 1977. [CrossRef]
- Thomas Ericson and Victor Zinoviev. Codes on Euclidean spheres, volume 63 of North-Holland Mathematical Library. North-Holland Publishing Co., Amsterdam, 2001.
- O. R. Musin. Bounds for codes by semidefinite programming. Tr. Mat. Inst. Steklova, 263:143–158, 2008. [CrossRef]
- Alex Samorodnitsky. On linear programming bounds for spherical codes and designs. Discrete Comput. Geom., 31(3):385–394, 2004. [CrossRef]
- Naser Talebizadeh Sardari and Masoud Zargar. New upper bounds for spherical codes and packings. Math. Ann., 389(4):3653–3703, 2024. [CrossRef]
- N. J. A. Sloane. Tables of sphere packings and spherical codes. IEEE Trans. Inform. Theory, 27(3):327–338, 1981. [CrossRef]
- Henry Cohn and Yufei Zhao. Sphere packing bounds via spherical codes. Duke Math. J., 163(10):1965–2002, 2014. [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).