Preprint
Article

This version is not peer-reviewed.

Functional Delsarte-Goethals-Seidel-Kabatianskii-Levenshtein-Pfender Bound

Submitted:

29 October 2024

Posted:

18 November 2024

You are already at the latest version

Abstract

Pfender \textit{[J. Combin. Theory Ser. A, 2007]} provided a one-line proof for a variant of the Delsarte-Goethals-Seidel-Kabatianskii-Levenshtein upper bound for spherical codes, which offers an upper bound for the celebrated (Newton-Gregory) kissing number problem. Motivated by this proof, we introduce the notion of codes in pointed metric spaces (in particular on Banach spaces) and derive a nonlinear (functional) Delsarte-Goethals-Seidel-Kabatianskii-Levenshtein-Pfender upper bound for spherical codes. We also introduce nonlinear (functional) Kissing Number Problem.

Keywords: 
;  ;  

1. Introduction

Let d N and θ [ 0 , 2 π ) . A set { τ j } j = 1 n of unit vectors in R d is said to be ( d , n , θ ) -spherical code [1] in R d if
τ j , τ k cos θ , 1 j , k n , j k .
Fundamental problem associated with spherical codes is the following.
Problem 1. 
Given d and θ, what is the maximum n such that there exists a ( d , n , θ ) -spherical code { τ j } j = 1 n in R d ?
The case θ = π / 3 is known as the famous (Newton-Gregory) kissing number problem. With extensive efforts from many mathematicians, it is still not completely resolved in every dimension (but resolved in dimensions, 1, 2, 3, 4, 8 and 24) [2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21]. We refer [22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37] for more on spherical codes. Problem 1 has connection even with sphere packing [38]. Most used method for obtaining upper bounds on spherical codes is the Delsarte-Goethals-Seidel-Kabatianskii-Levenshtein bound which we recall. Let n N be fixed. The Gegenbauer polynomials are defined inductively as
G 0 ( n ) ( r ) 1 , r [ 1 , 1 ] , G 1 ( n ) ( r ) r , r [ 1 , 1 ] , G k ( n ) ( r ) ( 2 k + n 4 ) r G k 1 ( n ) ( r ) ( k 1 ) G k 2 ( n ) ( r ) k + n 3 , r [ 1 , 1 ] , k 2 .
Then the family { G k ( n ) } k = 0 is orthogonal on the interval [ 1 , 1 ] with respect to the weight
ρ ( r ) ( 1 r 2 ) n 3 2 , r [ 1 , 1 ] .
Theorem 1. 
[32,33] (Delsarte-Goethals-Seidel-Kabatianskii-Levenshtein Linear Programming Bound) Let { τ j } j = 1 n be a ( d , n , θ ) -spherical code in R d . Let P be a real polynomial satisfying following conditions.
(i) 
P ( r ) 0 for all 1 r cos θ .
(ii) 
Coefficients in the Gegenbauer expansion
P = k = 0 m a k G k ( n )
satisfy
a 0 > 0 , a k 0 , 1 k m .
Then
n P ( 1 ) a 0 .
In 2007, Pfender gave a one-line proof for a variant of Theorem 1.
Theorem 2. 
[19] (Delsarte-Goethals-Seidel-Kabatianskii-Levenshtein-Pfender Bound) Let { τ j } j = 1 n be a ( d , n , θ ) -spherical code in R d . Let c > 0 and ϕ : [ 1 , 1 ] R be a function satisfying following.
(i) 
j = 1 n k = 1 n ϕ ( τ j , τ k ) 0 .
(ii) 
ϕ ( r ) + c 0 for all 1 r cos θ .
Then
n ϕ ( 1 ) + c c .
In particular, if ϕ ( 1 ) + c 1 , then n 1 / c .
Motivated from Theorem 2, we formulate the notion of codes in pointed metric spaces. We show that bound of Delsarte-Goethals-Seidel-Kabatianskii-Levenshtein-Pfender can be extended for pointed metric spaces (in particular, for Banach spaces).

2. Metric Codes

Let ( M , 0 ) be a pointed metric space. The collection Lip 0 ( M , R ) is defined as Lip 0 ( M , R ) { f : M R is~Lipschitz~and f ( 0 ) = 0 } . For f Lip 0 ( M , R ) , the Lipschitz norm is defined as
f Lip 0 sup x , y M , x y | f ( x ) f ( y ) | d ( x , y ) .
We introduce metric codes as follows.
Definition 1. 
Let ( M , 0 ) be a pointed metric space with metric m. For 1 j n , let f j Lip 0 ( M , R ) and τ j M . The pair ( { f j } j = 1 n , { τ j } j = 1 n ) is said to be a ( n , θ ) -metric code or ( n , θ ) -nonlinear code or ( n , θ ) -Lipschitz code in M if following conditions hold.
(i) 
f j Lip 0 = 1 for all 1 j n .
(ii) 
m ( τ j , 0 ) = 1 for all 1 j n .
(iii) 
f j ( τ j ) = 1 for all 1 j n .
(iv) 
f j ( τ k ) cos θ for all 1 j , k n , j k .
We call the case θ = π / 3 as the nonlinear kissing number problem .
For Banach spaces, we define (linear) functional codes as follows.
Definition 2. 
Let X be a real Banach space. For 1 j n , let f j X * and τ j X . The pair ( { f j } j = 1 n , { τ j } j = 1 n ) is said to be a ( n , θ ) -functional code in X if following conditions hold.
(i) 
f j = 1 for all 1 j n .
(ii) 
τ j = 1 for all 1 j n .
(iii) 
f j ( τ j ) = 1 for all 1 j n .
(iv) 
f j ( τ k ) cos θ for all 1 j , k n , j k .
We call the case θ = π / 3 as thefunctional kissing number problem .

Proposition 1. 

For the space R d , Definition 2 matches with the spherical codes (in particular with the kissing-number problem).
Proof.Let ( { f j } j = 1 n , { τ j } j = 1 n ) be a ( n , θ ) -functional code in R d . We need to show that f j ( x ) = τ j for all x R d and for all 1 j n . Let 1 j n . From Riesz representation theorem, there exists a unique w j R d such that f j ( x ) = x , ω j for all x R d and f j = ω j . Now we need to show that ω j = τ j . Since f j = 1 , we must have ω j = 1 . But then
1 = f j ( τ j ) = τ j , ω j τ j ω j = 1 .
Therefore ω j = α τ j for some α R . The conditions ω j = τ j = 1 and τ j , ω j = 1 then force ω j = τ j . □
Following is a nonlinear generalization of Theorem 2.
Theorem 3. (Functional Delsarte-Goethals-Seidel-Kabatianskii-Levenshtein-Pfender Bound) Let ( { f j } j = 1 n , { τ j } j = 1 n ) be a ( n , θ ) -metric code in a pointed metric space M . Let c > 0 and ϕ : [ 1 , 1 ] R be a function satisfying following.
(i) 
j = 1 n k = 1 n ϕ ( f j ( τ k ) ) 0 .
(ii) 
ϕ ( r ) + c 0 for all 1 r cos θ .
Then
n ϕ ( 1 ) + c c .
In particular, if ϕ ( 1 ) + c 1 , then n 1 / c .
Proof. 
Define ψ : [ 1 , 1 ] r ψ ( r ) ϕ ( r ) + c R . Then
j = 1 n k = 1 n ψ ( f j ( τ k ) ) = j = 1 n ψ ( f j ( τ j ) ) + 1 j , k n , j k ψ ( f j ( τ k ) ) = j = 1 n ψ ( 1 ) + 1 j , k n , j k ψ ( f j ( τ k ) ) = n ( ϕ ( 1 ) + c ) + 1 j , k n , j k ( ϕ ( f j ( τ k ) ) + c ) n ( ϕ ( 1 ) + c ) + 0 = n ( ϕ ( 1 ) + c ) .
We also have
j = 1 n k = 1 n ψ ( f j ( τ k ) ) = j = 1 n k = 1 n ( ϕ ( f j ( τ k ) ) + c ) = j = 1 n k = 1 n ϕ ( f j ( τ k ) ) + c n 2 .
Therefore
c n 2 j = 1 n k = 1 n ϕ ( f j ( τ k ) ) + c n 2 n ( ϕ ( 1 ) + c ) .
Following generalization of Theorem 3 is easy.
Theorem 4. 
Let ( { f j } j = 1 n , { τ j } j = 1 n ) be a ( n , θ ) -metric code in a pointed metric space M . Let c > 0 and
ϕ : { f j ( τ k ) : 1 j , k n } R
be a function satisfying following.
(i) 
j = 1 n k = 1 n ϕ ( f j ( τ k ) ) 0 .
(ii) 
ϕ ( r ) + c 0 for all r { f j ( τ k ) : 1 j , k n , j k } .
Then
n ϕ ( 1 ) + c c .
In particular, if ϕ ( 1 ) + c 1 , then n 1 / c .

References

  1. Chuanming Zong. Sphere packings. Universitext. Springer-Verlag, New York, 1999.
  2. Kurt M. Anstreicher. The thirteen spheres: a new proof. Discrete Comput. Geom., 31(4):613–625, 2004. [CrossRef]
  3. Christine Bachoc and Frank Vallentin. New upper bounds for kissing numbers from semidefinite programming. J. Amer. Math. Soc., 21(3):909–924, 2008. [CrossRef]
  4. Károly Böröczky. The Newton-Gregory problem revisited. In Discrete geometry, volume 253 of Monogr. Textbooks Pure Appl. Math., pages 103–110. Dekker, New York, 2003.
  5. Peter Boyvalenkov, Stefan Dodunekov, and Oleg Musin. A survey on the kissing numbers. Serdica Math. J. 2012. [CrossRef]
  6. Bill Casselman. The difficulties of kissing in three dimensions. Notices Amer. Math. Soc., 51(8):884–885, 2004.
  7. Alexey Glazyrin. A short solution of the kissing number problem in dimension three. Discrete Comput. Geom., 69(3):931–935, 2023. [CrossRef]
  8. Matthew Jenssen, Felix Joos, and Will Perkins. On kissing numbers and spherical codes in high dimensions. Adv. Math., 335:307–321, 2018. [CrossRef]
  9. Kenz Kallal, Tomoka Kan, and Eric Wang. Improved lower bounds for kissing numbers in dimensions 25 through 31. SIAM J. Discrete Math., 31(3):1895–1908, 2017. [CrossRef]
  10. N. A. Kuklin. Delsarte method in the problem on kissing numbers in high-dimensional spaces. Proc. Steklov Inst. Math., 284(1):S108–S123, 2014. [CrossRef]
  11. John Leech. The problem of the thirteen spheres. Math. Gaz., 40:22–23, 1956. [CrossRef]
  12. Leo Liberti. Mathematical programming bounds for kissing numbers. In Optimization and decision science: methodologies and applications, volume 217 of Springer Proc. Math. Stat., pages 213–222. Springer, Cham, 2017. [CrossRef]
  13. Fabrício Caluza Machado and Fernando Mário de Oliveira Filho. Improving the semidefinite programming bound for the kissing number by exploiting polynomial symmetry. Exp. Math., 27(3):362–369, 2018. [CrossRef]
  14. H. Maehara. The problem of thirteen spheres—a proof for undergraduates. European J. Combin., 28(6):1770–1778, 2007. [CrossRef]
  15. Hans D. Mittelmann and Frank Vallentin. High-accuracy semidefinite programming bounds for kissing numbers. Experiment. Math., 19(2):175–179, 2010. [CrossRef]
  16. Oleg R. Musin. The kissing problem in three dimensions. Discrete Comput. Geom., 35(3):375–384, 2006. [CrossRef]
  17. Oleg R. Musin. The kissing number in four dimensions. Ann. of Math. (2), 168(1):1–32, 2008. [CrossRef]
  18. A. M. Odlyzko and N. J. A. Sloane. New bounds on the number of unit spheres that can touch a unit sphere in n dimensions. J. Combin. Theory Ser. A, 26(2):210–214, 1979. [CrossRef]
  19. Florian Pfender. Improved Delsarte bounds for spherical codes in small dimensions. J. Combin. Theory Ser. A, 114(6):1133–1147, 2007. [CrossRef]
  20. Florian Pfender and Günter M. Ziegler. Kissing numbers, sphere packings, and some unexpected proofs. Notices Amer. Math. Soc., 51(8):873–883, 2004.
  21. K. Schütte and B. L. van der Waerden. Das Problem der dreizehn Kugeln. Math. Ann., 125:325–334, 1953. [CrossRef]
  22. Christine Bachoc and Frank Vallentin. Semidefinite programming, multivariate orthogonal polynomials, and codes in spherical caps. European J. Combin., 30(3):625–637, 2009. [CrossRef]
  23. Eiichi Bannai and Etsuko Bannai. A survey on spherical designs and algebraic combinatorics on spheres. European J. Combin., 30(6):1392–1425, 2009. [CrossRef]
  24. Eiichi Bannai and N. J. A. Sloane. Uniqueness of certain spherical codes. Canadian J. Math., 33(2):437–449, 1981. [CrossRef]
  25. Alexander Barg and Oleg R. Musin. Codes in spherical caps. Adv. Math. Commun., 1(1):131–149, 2007. [CrossRef]
  26. P. G. Boyvalenkov, P. D. Dragnev, D. P. Hardin, E. B. Saff, and M. M. Stoyanova. Universal lower bounds for potential energy of spherical codes. Constr. Approx., 44(3):385–415, 2016. [CrossRef]
  27. P. G. Boyvalenkov, P. D. Dragnev, D. P. Hardin, E. B. Saff, and M. M. Stoyanova. Bounds for spherical codes: the Levenshtein framework lifted. Math. Comp., 90(329):1323–1356, 2021. [CrossRef]
  28. Peter Boyvalenkov and Danyo Danev. On maximal codes in polynomial metric spaces. In Applied algebra, algebraic algorithms and error-correcting codes, volume 1255 of Lecture Notes in Comput. Sci., pages 29–38. Springer, Berlin, 1997.
  29. Peter Boyvalenkov, Danyo Danev, and Ivan Landgev. On maximal spherical codes. II. [CrossRef]
  30. Henry Cohn, Yang Jiao, Abhinav Kumar, and Salvatore Torquato. Rigidity of spherical codes. Geom. Topol., 15(4):2235–2273, 2011. [CrossRef]
  31. J. H. Conway and N. J. A. Sloane. Sphere packings, lattices and groups. Springer-Verlag, New York, 1999. 1999.
  32. P. Delsarte, J. M. Goethals, and J. J. Seidel. Spherical codes and designs. Geometriae Dedicata, 6(3):363–388, 1977. [CrossRef]
  33. Thomas Ericson and Victor Zinoviev. Codes on Euclidean spheres, volume 63 of North-Holland Mathematical Library. North-Holland Publishing Co., Amsterdam, 2001.
  34. O. R. Musin. Bounds for codes by semidefinite programming. Tr. Mat. Inst. Steklova, 263:143–158, 2008. [CrossRef]
  35. Alex Samorodnitsky. On linear programming bounds for spherical codes and designs. Discrete Comput. Geom., 31(3):385–394, 2004. [CrossRef]
  36. Naser Talebizadeh Sardari and Masoud Zargar. New upper bounds for spherical codes and packings. Math. Ann., 389(4):3653–3703, 2024. [CrossRef]
  37. N. J. A. Sloane. Tables of sphere packings and spherical codes. IEEE Trans. Inform. Theory, 27(3):327–338, 1981. [CrossRef]
  38. Henry Cohn and Yufei Zhao. Sphere packing bounds via spherical codes. Duke Math. J., 163(10):1965–2002, 2014. [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

Disclaimer

Terms of Use

Privacy Policy

Privacy Settings

© 2026 MDPI (Basel, Switzerland) unless otherwise stated