Submitted:
01 February 2024
Posted:
02 February 2024
You are already at the latest version
Abstract
Keywords:
1. Description of the QUALTRA Geothermal Project
2. Life Cycle Assessment
2.1. Life Cycle Analysis of Geothermal Power Plants
2.2. Life Cycle Inventory (LCI) for the QUALTRA Plant
2.3. MidPoint Life Cycle Impact Analysis (LCIA) for the QUALTRA Plant
2.4. Building the Single Score - QUALTRA
3. Exergy Analysis
Exergy Analysis Qualtra

4. Exergo-Economic and Exergo-Environmental Analysis

4.1. Exergo-Economic Results Qualtra
| k | Component | PEC [€] |
[€/s] |
[€/s] |
[€/s] |
[€/kWh] |
[€/kWh] |
[%] |
[-] |
|---|---|---|---|---|---|---|---|---|---|
| 1 | Pump | 4.92E+05 | 3.7E-03 | 0.00340 | 0.00705 | 0.09467 | 0.13708 | 51.9 | 0.45 |
| 2 | RH | 9.00E+05 | 6.7E-03 | 0.00582 | 0.01251 | 0.06583 | 0.11275 | 53.5 | 0.71 |
| 3 | HEgeo | 4.82E+06 | 3.6E-02 | 0.06150 | 0.09730 | 0.04279 | 0.06098 | 36.8 | 0.43 |
| 4 | Turbine | 2.76E+06 | 2.0E-02 | 0.07126 | 0.09179 | 0.06583 | 0.09467 | 22.4 | 0.44 |
| 5 | Condenser | 1.84E+06 | 1.4E-02 | 0.11941 | 0.13305 | 0.06583 | 0.00000 | 10.3 | - |
| 6 | Pre-cooler | 1.06E+05 | 7.9E-04 | 0.00014 | 0.00093 | 0.04279 | 0.00000 | 84.7 | - |
| 7 | Compressor - I | 5.10E+05 | 3.8E-03 | 0.00062 | 0.00442 | 0.09467 | 0.24030 | 85.9 | 1.54 |
| 8 | Intercooler | 1.16E+05 | 8.6E-04 | 0.00124 | 0.00210 | 0.10653 | 0.00000 | 41.1 | - |
| 9 | Compressor - II | 4.71E+05 | 3.5E-03 | 0.00057 | 0.00407 | 0.09467 | 0.24160 | 86.0 | 1.55 |
| 10 | Post Cooler | 1.32E+05 | 9.8E-04 | 0.00186 | 0.00284 | 0.13951 | 0.00000 | 34.6 | - |
| 11 | Well | 4.63E+07 | 2.1E-01 | 0 | 0.21180 | 0.00000 | 0.04094 | 100.0 | 0.00 |
| - | Total Plant | 5.84E+07 | - | - | - | - | - | - | - |
4.2. Exergo-Environmental Analysis Qualtra
| k | Component | Single score [kPts] |
[Pts/s] |
[Pts/s] |
[Pts/s] |
[%] |
[-] |
|---|---|---|---|---|---|---|---|
| 1 | Pump | 11.93 | 5.20E-04 | 3.00E-03 | 3.52E-03 | 14.78 | 0.21 |
| 2 | RH | 25.63 | 1.12E-03 | 4.93E-03 | 6.05E-03 | 18.46 | 0.35 |
| 3 | HEgeo | 210.0 | 9.15E-03 | 6.00E-02 | 6.91E-02 | 13.24 | 0.28 |
| 4 | Turbine | 609.29 | 2.65E-02 | 6.04E-02 | 8.69E-02 | 30.52 | 0.50 |
| 5 | Condenser | 70.23 | 3.06E-03 | 1.01E-01 | 1.04E-01 | 2.93 | - |
| 6 | Pre-cooler | 3.40 | 1.48E-04 | 1.39E-04 | 2.87E-04 | 51.54 | - |
| 7 | Compressor - I | 2.10 | 9.17E-05 | 5.50E-04 | 6.42E-04 | 14.28 | 0.19 |
| 8 | Intercooler | 5.44 | 2.37E-04 | 7.00E-04 | 9.37E-04 | 25.28 | - |
| 9 | Compressor - II | 1.94 | 8.43E-05 | 5.05E-04 | 5.89E-04 | 14.32 | 0.19 |
| 10 | Post Cooler | 7.00 | 3.05E-04 | 9.31E-04 | 1.24E-03 | 24.68 | - |
| 11 | Well | 5142. | 2.25E-01 | 0.00E+00 | 2.25E-01 | 100.0 | 0.00 |
5. Conclusions
Acknowledgments
List of Symbols
| b | specific environmental cost per unit exergy, EcoPoints/kJ |
| environmental cost per unit time, Ecopoints/s | |
| c | specific cost per unit exergy, €/kJ |
| cost rate, €/s | |
| e | specific exergy, kJ/kg |
| total exergy of a stream, kW | |
| f | capital intensity exergo-economic factor |
| fd | resource intensity exergo-environmental factor |
| h | specific enthalpy, kJ/kg |
| mass flow rate, kg/s | |
| r | cost increase exergo-economic factor |
| rd | impact increase exergo-environemntal factor |
| s | specific enthalpy, kJ/(kgK) |
| T | temperature, K |
| y | exergy destruction ratio |
| LCA impact rate of a component, Ecopoints/s | |
| Component Capital + Operation and Maintenance levelized cost rate, €/s | |
| ε | component or system exergy efficiency |
| Subscripts: | |
| o | reference environment |
| d | direct |
| D | Destruction |
| e | outlet (exit) |
| F | Fuel |
| in | inlet |
| ind | indirect |
| k | k-th component |
| L | Loss |
| P | Product |
| Res | Resource |
| Rock | Hot Rock reference |
| Acronyms: | |
| GHG | GreenHouse Gases |
| GPP | Geothermal Power Plant |
| 1 | This is the technology applied in Hellisheidi and experimented in Kizildere in the improved (reinjection) scenarios. |
References
- Niknam, P.H., Talluri, L., Fiaschi, D., Manfrida, G., Sensitivity analysis and dynamic modelling of the reinjection processin a binary cycle geothermal power plant of Larderello area, Energy 214 (2021). [CrossRef]
- Leontidis, V., Niknam, P.H., Durgut, I., Talluri, L., Manfrida, G., Fiaschi, D., Akin, S., Gainville, M., Modelling reinjection of two-phase non-condensable gases and water in geothermal wells, Applied Thermal Engineering 223 (2023). [CrossRef]
- Karlsdóttir, M.R.; Palsson, O.P.; Pálsson, H.; Maya-Drysdale, L. Life cycle inventory of a flash geothermal combined heat and power plant located in Iceland. Int. J. Life Cycle Assess. 2015, 20, 503–519. [Google Scholar] [CrossRef]
- Paulillo, A.; Striolo, A.; Lettieri, P. The environmental impacts and the carbon intensity of geothermal energy: A case study on the Hellisheiði plant. Environ. Int. 2019, 133, 105226. [Google Scholar] [CrossRef] [PubMed]
- Heberle, F.; Schifflechner, C.; Brüggemann, D. Life cycle assessment of Organic Rankine Cycles for geothermal power generation considering low-GWP working fluids. Geothermics 2016, 64, 392–400. [Google Scholar] [CrossRef]
- Frick, S.; Kaltschmitt, M.; Schröder, G. Life cycle assessment of geothermal binary power plants using enhanced low-temperature reservoirs. Energy 2010, 35, 2281–2294. [Google Scholar] [CrossRef]
- Pratiwi, A.; Ravier, G.; Genter, A. Life-cycle climate-change impact assessment of enhanced geothermal system plants in the Upper Rhine Valley. Geothermics 2018, 75, 26–39. [Google Scholar] [CrossRef]
- Parisi, M.L.; Douziech, M.; Tosti, L.; Pérez-López, P.; Mendecka, B.; Ulgiati, S.; Fiaschi, D.; Manfrida, G.; Blanc, I. Definition of LCA Guidelines in the Geothermal Sector to Enhance Result Comparability. Energies 2020, 13, 3534. [Google Scholar] [CrossRef]
- Blanc, I., Damen, L., Douziech, M., Fiaschi, D., Manfrida, G., Parisi, M.L., Lopez, P.P., Ravier, G., Tosti, L., Mendecka, B., First Version of Harmonized Guidelines to Perform Environmental Assessment for Geothermal Systems Based on LCA and non LCA Impact Indicators: LCA Guidlines for Geothermal Installations. Deliverable 3.2, GEOENVI Project, 2020. Available online: https://www.geoenvi.eu/wpcontent/ (accessed on 10/02/2021).
- International Organization for Standardization, “ISO 14040:2006 - Environmental Management – Life Cycle Assessment – Principles and Framework. 2006: Geneva, Switzerland”.
- International Organization for Standardization, “ISO 14044:2006. Environmental management -- Life cycle assessment -- Requirements and guidelines”.
- Zuffi, C., Manfrida, G., Asdrubali, F., & Talluri, L. (2022). Life cycle assessment of geothermal power plants: A comparison with other energy conversion technologies. Geothermics, 104, 102434. [CrossRef]
- OpenLCA 1.10, GreenDelta, available at https://www.openlca.org/download/, (accessed on 10/02/2021).
- Ecoinvent Database 3.6. 2020. Available online: https://www.ecoinvent.org/database/older-versions/ecoinvent-36/ecoinvent-36.html (accessed on 1 December 2020).
- Kotas, T.J. The Exergy Method of Thermal Plant Analysis, Butterworths 1985.
- Szargut, J., Morris, D. R., Steward, F. R., Exergy Analysis of Thermal, Chemical and Metallurgical Processes, New York: Hemisphere Publishing Corporation, 1988.
- Di Pippo, R., Second Law assessment of binary plants generating power from low-temperature geothermal fluids, Geothermics 33 (2004) 565–586. [CrossRef]
- Bejan, A., Moran, M., Tsatsaronis, G., Thermal design and optimization. Wiley, 1996, New York.
- Lazzaretto, A., Tsatsaronis, G., SPECO: A systematic and general methodology for calculating efficiencies and costs in thermal systems, Energy 31 (2006) 1257–1289. [CrossRef]
- Manfrida, G., Talluri, L. Ungar, P., Zuffi, C., Díaz-Ramírez, M., Leiva, H., Mainar-Toledo, M.D., Jokull, S., Exergo-economic and exergo-environmental assessment of two large CHP geothermal power plants, Geothermics, 2023. [CrossRef]
- Frangopoulos, Ch., Caralis, Y.C., A method for taking into account environmental impacts in the economic evaluation of energy systems, Energy Conversion and Management, 38, 15-17, 1751-1763, 1997. [CrossRef]
- Meyer, L., Tsatsaronis, G., Buchgeister, J., Schebek, L., Exergoenvironmental analysis for evaluation of the environmental impact of energy conversion systems, Energy 34 (2009) 75–89. [CrossRef]
- Asdrubali, F.; Baldinelli, G.; D’Alessandro, F.; Scrucca, F. Life cycle assessment of electricity production from renewable energies: Review and results harmonization. Renew. Sustain. Energy Rev. 2015, 42, 1113–1122. [Google Scholar] [CrossRef]
- Basosi, R.; Bonciani, R.; Frosali, D.; Manfrida, G.; Parisi, M.L.; Sansone, F. Life Cycle Analysis of a Geothermal Power Plant: Comparison of the Environmental Performance with Other Renewable Energy Systems. Sustainability 2020, 12, 2786. [Google Scholar] [CrossRef]










| Site-specific parameter | Unit | Value for QUALTRA |
| Reservoir | ||
| Number of wells drilled | - | 5 |
| Total meters drilled | m | 18520 |
| Collection pipelines | m | 1750 |
| Power plant | ||
| Net installed capacity-binary cycle | MW | 10 |
| Geothermal well | Unit | Amount |
| Drilling well | ||
| Bentonite | kg/mwells | 7.23 |
| Barite | kg/mwells | 38.55 |
| Chemical, inorganic | kg/mwells | 0.41 |
| Chemical, organic | kg/mwells | 3.22 |
| Diesel | MJ/mwells | 5534.10 |
| Sodium Hydroxide | kg/mwells | 0.37 |
| Steel | kg/mwells | 59.30 |
| Water | m3/mwells | 0.01 |
| Well Head | ||
| Steel | kg/well | 1700 |
| ReCiPe 2016 midpoint | Impact result | Unit (refer to kWh) | |
|---|---|---|---|
| Fine particulate matter formation | PMFP | 1.80E-05 | kg PM2.5 eq |
| Fossil resource scarcity | FFP | 1.86E-03 | kg oil eq |
| Freshwater ecotoxicity | FETP | 1.10E-03 | kg 1,4-DCB |
| Freshwater eutrophication | FEP | 2.10E-06 | kg P eq |
| Global warming | GWP | 6.56E-03 | kg CO2 eq |
| Human carcinogenic toxicity | HTPc | 1.09E-03 | kg 1,4-DCB |
| Human non-carcinogenic toxicity | HTPnc | 1.14E-02 | kg 1,4-DCB |
| Ionizing radiation | IRP | 1.40E-04 | kBq Co-60 eq |
| Land use | LOP | 3.33E-05 | m2a crop eq |
| Marine ecotoxicity | METP | 1.40E-03 | kg 1,4-DCB |
| Marine eutrophication | MEP | 1.09E-07 | kg N eq |
| Mineral resource scarcity | SOP | 2.65E-06 | kg Cu eq |
| Ozone formation, Human health | HOFP | 5.72E-05 | kg NOx eq |
| Ozone formation, Terrestrial ecosystems | EOFP | 5.84E-05 | kg NOx eq |
| Stratospheric ozone depletion | ODP | 2.33E-08 | kg CFC11 eq |
| Terrestrial acidification | TAP | 3.60E-05 | kg SO2 eq |
| Terrestrial ecotoxicity | TETP | 5.71E-02 | kg 1,4-DCB |
| Water consumption | WCP | 1.49E-02 | m3 |
| Component # | Component name | Component # | Component name |
| 1 | Pump | 6 | Pre-cooler |
| 2 | RHE | 7 | Compressor 1 |
| 3 | MHE (Geo) | 8 | Intercooler |
| 4 | Turbine | 9 | Compressor 2 |
| 5 | Condenser | 10 | Post Cooler |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
