Submitted:
02 October 2023
Posted:
03 October 2023
You are already at the latest version
Abstract
Keywords:
1. Introduction
2. Proposed Work
2.1. Instance Segmentation
2.2. Deep CNN Architecture
2.3. Key Frames Extraction

2.4. Fire Classification and Localization

2.5. Fire Analysis
| Algorithm 3 Determining Intensity and Severity of Fire |
| Input: Labelled Image |
| Output: Alert concerning person/department |
| 1. Trained Proposed CNN model on 23 classes |
| 2. Input Image |
| 3. Extracted objects from using Instance Segmentation |
| 4. |
| 5. |
| 6. |
| 7. |
| 8. |
| 9. |
| 10. then Object is times bigger and each pixels will be equal to 1 pixel |
| then Object is either equal or times smaller and each pixel will be equal to pixels in case of smaller object |
| 11. |
| 12. |
| 13. , |
| 14. |
| 15. then label fire as High Severity. then label fire as Medium Severity. then label fire as Low Severity. |
3. Experimental Results and Discussion:
3.1. Experimental Setup
3.2. Experimental Results
3.3. Robustness of Proposed Model:
3.4. Discussion:
4. Conclusion
Conflicts of Interest
References
- Gaur, A.; et al. Fire sensing technologies: A review. IEEE Sensors Journal 2019, 19, 3191–3202. [Google Scholar] [CrossRef]
- Ahrens, M. Trends and patterns of US fire loss. National Fire Protection Association (NFPA) report Google Scholar, 2017.
- Fonollosa, J.; Solórzano, A.; Marco, S. Chemical sensor systems and associated algorithms for fire detection: A review. Sensors 2018, 18, 553. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; et al. Long-range raman distributed fiber temperature sensor with early warning model for fire detection and prevention. IEEE sensors journal 2019, 19, 3711–3717. [Google Scholar] [CrossRef]
- Li, P.; Zhao, W. Image fire detection algorithms based on convolutional neural networks. Case Studies in Thermal Engineering 2020, 19, 100625. [Google Scholar] [CrossRef]
- Wang, H.; Fang, X.; Li, Y.; Zheng, Z.; Shen, J. Research and application of the underground fire detection technology based on multi-dimensional data fusion. Tunnelling and Underground Space Technology 2021, 109, 103753. [Google Scholar] [CrossRef]
- Pathak, N.; Misra, S.; Mukherjee, A.; Kumar, N. HeDI: Healthcare Device Interoperability for IoT-Based e-Health Platforms. IEEE Internet of Things Journal 2021. [CrossRef]
- Kumar, M.; Raju, K.S.; Kumar, D.; Goyal, N.; Verma, S.; Singh, A. An efficient framework using visual recognition for IoT based smart city surveillance. Multimedia Tools and Applications 2021, 1–19. [Google Scholar] [CrossRef]
- Dugdale, J.; Moghaddam, M.T.; Muccini, H. IoT4Emergency: Internet of Things for Emergency Management. ACM SIGSOFT Software Engineering Notes 2021, 46, 46–33. [Google Scholar] [CrossRef]
- Guha-Sapir, D.; Hoyois, P. Estimating populations affected by disasters: A review of methodological issues and research gaps; Centre for Research on the Epidemiology of Disasters (CRED), Institute of Health and Society (IRSS), University Catholique de Louvain: Brussels, 2015. [Google Scholar]
- Khalil, A.; Rahman, S.U.; Alam, F.; Ahmad, I.; Khalil, I. Fire Detection Using Multi Color Space and Background Modeling. Fire Technology 2020, 1–19. [Google Scholar] [CrossRef]
- Xie, Y.; et al. Efficient Video Fire Detection Exploiting Motion-Flicker-Based Dynamic Features and Deep Static Features. IEEE Access 2020, 8, 81904–81917. [Google Scholar] [CrossRef]
- Luo, Y.; Zhao, L.; Liu, P.; Huang, D. Fire smoke detection algorithm based on motion characteristic and convolutional neural networks. Multimedia Tools and Applications 2018, 77, 15075–15092. [Google Scholar] [CrossRef]
- Khudayberdiev, O.; Butt, M.H.F. Fire detection in Surveillance Videos using a combination with PCA and CNN. Academic Journal of Computing & Information Science 2020, 3. [Google Scholar] [CrossRef]
- Rashid, M.; Shah, J.H.; Sharif, M.; Awan, M.Y.; Alkinani, M.H. An optimized approach for breast cancer classification for histopathological images based on hybrid feature set. Current Medical Imaging 2021, 17, 136–147. [Google Scholar] [CrossRef]
- Khan, M.-A.; et al. A Blockchain Based Framework for Stomach Abnormalities Recognition. Computers, Materials & Continua 2021, 67, 141–158. [Google Scholar] [CrossRef]
- Khan, M.A.; Alhaisoni, M.; Saba, T.; Rehman, A.; Iqbal, T. A hybrid deep learning architecture for the classification of superhero fashion products: An application for medical-tech classification. Computer Modeling in Engineering & Sciences 2020, 124, 1017–1033. [Google Scholar] [CrossRef]
- Khan, M.A.; Armghan, A.; Javed, M.Y. SCNN: A Secure Convolutional Neural Network using Blockchain. In Proceedings of the 2020 2nd International Conference on Computer and Information Sciences (ICCIS), 2020; IEEE; pp. 1–5. [Google Scholar]
- Nasir, I.M.; et al. Pearson correlation-based feature selection for document classification using balanced training. Sensors 2020, 20, 6793. [Google Scholar] [CrossRef]
- Nasir, I.M.; et al. Deep Learning-Based Classification of Fruit Diseases: An Application for Precision Agriculture. CMC-COMPUTERS MATERIALS & CONTINUA 2021, 66, 1949–1962. [Google Scholar] [CrossRef]
- Raza, M.; Shah, J.H.; Khan, M.A.; Rehman, A. Human action recognition using machine learning in uncontrolled environment. In Proceedings of the 2021 1st International Conference on Artificial Intelligence and Data Analytics (CAIDA), 2021; IEEE; pp. 182–187. [Google Scholar]
- Raza, M.; Shah, J.H.; Wang, S.-H.; Tariq, U.; Khan, M.A. HAREDNet: A deep learning based architecture for autonomous video surveillance by recognizing human actions. Computers and Electrical Engineering 2022, 99, 107805. [Google Scholar] [CrossRef]
- Tariq, J.; et al. Fast intra mode selection in HEVC using statistical model. Computers, Materials and Continua 2022, 70, 3903–3918. [Google Scholar] [CrossRef]
- Mushtaq, I.; Umer, M.; Imran, M.; Muhammad, G.; Shorfuzzaman, M. Customer prioritization for medical supply chain during COVID-19 pandemic. Computers, Materials and Continua 2021, 59–72. [Google Scholar] [CrossRef]
- Raza, M.; Ulyah, S.M.; Shah, J.H.; Fitriyani, N.L.; Syafrudin, M. ENGA: Elastic Net-Based Genetic Algorithm for human action recognition. Expert Systems with Applications 2023, 227, 120311. [Google Scholar] [CrossRef]
- Frizzi, S.; Kaabi, R.; Bouchouicha, M.; Ginoux, J.-M.; Moreau, E.; Fnaiech, F. Convolutional neural network for video fire and smoke detection. In Proceedings of the IECON 2016-42nd Annual Conference of the IEEE Industrial Electronics Society, 2016; IEEE; pp. 877–882. [Google Scholar]
- Sharma, J.; Granmo, O.-C.; Goodwin, M.; Fidje, J.T. Deep convolutional neural networks for fire detection in images. In Proceedings of the International conference on engineering applications of neural networks, 2017; Springer; pp. 183–193. [Google Scholar] [CrossRef]
- Muhammad, K.; Ahmad, J.; Baik, S.W. Early fire detection using convolutional neural networks during surveillance for effective disaster management. Neurocomputing 2018, 288, 30–42. [Google Scholar] [CrossRef]
- Muhammad, K.; Ahmad, J.; Mehmood, I.; Rho, S.; Baik, S.W. Convolutional neural networks based fire detection in surveillance videos. IEEE Access 2018, 6, 18174–18183. [Google Scholar] [CrossRef]
- Muhammad, K.; Ahmad, J.; Lv, Z.; Bellavista, P.; Yang, P.; Baik, S.W. Efficient deep CNN-based fire detection and localization in video surveillance applications. IEEE Transactions on Systems, Man, and Cybernetics: Systems 2018, 49, 1419–1434. [Google Scholar] [CrossRef]
- Shen, D.; Chen, X.; Nguyen, M.; Yan, W.Q. Flame detection using deep learning. In Proceedings of the 2018 4th International conference on control, automation and robotics (ICCAR); IEEE; pp. 416–420.
- Kaabi, R.; Sayadi, M.; Bouchouicha, M.; Fnaiech, F.; Moreau, E.; Ginoux, J.M. Early smoke detection of forest wildfire video using deep belief network. In Proceedings of the 2018 4th International Conference on Advanced Technologies for Signal and Image Processing (ATSIP); IEEE; pp. 1–6.
- Hu, C.; Tang, P.; Jin, W.; He, Z.; Li, W. Real-time fire detection based on deep convolutional long-recurrent networks and optical flow method. In Proceedings of the 2018 37th Chinese Control Conference (CCC); IEEE; pp. 9061–9066.
- Saputra, F.A.; Al Rasyid, M.U.H.; Abiantoro, B.A. Prototype of early fire detection system for home monitoring based on Wireless Sensor Network. In Proceedings of the 2017 International Electronics Symposium on Engineering Technology and Applications (IES-ETA); IEEE; pp. 39–44.
- Jang, J.-Y.; Lee, K.-W.; Kim, Y.-J.; Kim, W.-T. S-FDS: A Smart Fire Detection System based on the Integration of Fuzzy Logic and Deep Learning. Journal of the Institute of Electronics and Information Engineers 2017, 54, 50–58. [Google Scholar]
- Yao, J.; et al. Predicting the minimum height of forest fire smoke within the atmosphere using machine learning and data from the CALIPSO satellite. Remote sensing of environment 2018, 206, 98–106. [Google Scholar] [CrossRef]
- Xu, S.S.; Mak, M.-W.; Cheung, C.-C. Deep neural networks versus support vector machines for ECG arrhythmia classification. In Proceedings of the 2017 IEEE International Conference on Multimedia & Expo Workshops (ICMEW); IEEE; pp. 127–132.
- Brostow, G.J.; Fauqueur, J.; Cipolla, R. Semantic object classes in video: A high-definition ground truth database. Pattern Recognition Letters 2009, 30, 88–97. [Google Scholar] [CrossRef]
- Bolya, D.; Zhou, C.; Xiao, F.; Lee, Y.J. Yolact: Real-time instance segmentation. In Proceedings of the IEEE/CVF International Conference on Computer Vision; 2019; pp. 9157–9166. [Google Scholar]
- Deng, J.; Dong, W.; Socher, R.; Li, L.-J.; Li, K.; Fei-Fei, L. Imagenet: A large-scale hierarchical image database. In Proceedings of the 2009 IEEE conference on computer vision and pattern recognition; IEEE; pp. 248–255.
- Kinnunen, T.; Kamarainen, J.-K.; Lensu, L.; Lankinen, J.; Käviäinen, H. Making visual object categorization more challenging: Randomized caltech-101 data set. In Proceedings of the 2010 20th International Conference on Pattern Recognition; IEEE; pp. 476–479.
- Jais, I.K.M.; Ismail, A.R.; Nisa, S.Q. Adam optimization algorithm for wide and deep neural network. Knowl. Eng. Data Sci 2019, 2, 41–46. [Google Scholar] [CrossRef]
- Krizhevsky, A.; Sutskever, I.; Hinton, G.E. Imagenet classification with deep convolutional neural networks. Advances in neural information processing systems 2012, 25, 1097–1105. [Google Scholar] [CrossRef]
- Szegedy, C.; Vanhoucke, V.; Ioffe, S.; Shlens, J.; Wojna, Z. Rethinking the inception architecture for computer vision. In Proceedings of the IEEE conference on computer vision and pattern recognition; 2016; pp. 2818–2826. [Google Scholar]
- Iandola, F.N.; Han, S.; Moskewicz, M.W.; Ashraf, K.; Dally, W.J.; Keutzer, K. SqueezeNet: AlexNet-level accuracy with 50x fewer parameters and<0.5 MB model size. arXiv preprint 2016, arXiv:1602.07360. [Google Scholar]
- Bellavista, P.; Ota, K.; Lv, Z.; Mehmood, I.; Rho, S. Towards smarter cities: Learning from Internet of Multimedia Things-generated big data. ed: Elsevier, 2020.
- Rafiee, A.; Dianat, R.; Jamshidi, M.; Tavakoli, R.; Abbaspour, S. Fire and smoke detection using wavelet analysis and disorder characteristics. In Proceedings of the 2011 3rd International Conference on Computer Research and Development, vol. 3, 2011; IEEE; pp. 262–265. [Google Scholar]
- Habiboğlu, Y.H.; Günay, O.; Çetin, A.E. Covariance matrix-based fire and flame detection method in video. Machine Vision and Applications 2012, 23, 1103–1113. [Google Scholar] [CrossRef]
- Chen, T.-H.; Wu, P.-H.; Chiou, Y.-C. An early fire-detection method based on image processing. In Proceedings of the 2004 International Conference on Image Processing, 2004. ICIP’04; IEEE; vol. 3, pp. 1707–1710.
- Foggia, P.; Saggese, A.; Vento, M. Real-time fire detection for video-surveillance applications using a combination of experts based on color, shape, and motion. IEEE TRANSACTIONS on circuits and systems for video technology 2015, 25, 1545–1556. [Google Scholar] [CrossRef]










| Combinations | Filters | Total Filters | Stride Size | Weight Size | Bias Vector | Activations |
|---|---|---|---|---|---|---|
| Input Layer | ||||||
| Convolutional + ReLU | ||||||
| Max Pooling | ||||||
| Convolutional + ReLU | ||||||
| Convolutional + ReLU | ||||||
| Max Pooling | ||||||
| Convolutional + ReLU | ||||||
| Convolutional + ReLU | ||||||
| Convolutional + ReLU | ||||||
| Max Pooling | ||||||
| Convolutional + ReLU | ||||||
| Convolutional + ReLU | ||||||
| Convolutional + ReLU | ||||||
| Convolutional + ReLU | ||||||
| Max Pooling | ||||||
| Convolutional + ReLU | ||||||
| Convolutional + ReLU | ||||||
| Convolutional + ReLU | ||||||
| Convolutional + ReLU | ||||||
| Convolutional + ReLU | ||||||
| Max Pooling | - | - | ||||
| Convolutional + ReLU | ||||||
| Convolutional + ReLU | ||||||
| Convolutional + ReLU | ||||||
| Convolutional + ReLU | ||||||
| Convolutional + ReLU | ||||||
| Convolutional + ReLU | ||||||
| Max Pooling | ||||||
| FC6 + ReLU + Dropout | ||||||
| FC7 + ReLU + Dropout | ||||||
| FC8 | ||||||
| Softmax |
| Video Name | Original File Name | Resolution | Frames | Modality | Total Frames |
|---|---|---|---|---|---|
| Video 1 | Flame1 | 402 | Fire | 64,049 | |
| Video 2 | Flame2 | 411 | Fire | ||
| Video 3 | Flame3 | 613 | Fire | ||
| Video 4 | Flame4 | 373 | Fire | ||
| Video 5 | Flame5 | 748 | Fire | ||
| Video 6 | indoor_night_20m_heptane_CCD_001 | 1,658 | Fire | ||
| Video 7 | indoor_night_20m_heptane_CCD_002 | 3,846 | Fire | ||
| Video 8 | outdoor_daytime_10m_gasoline_CCD_001 | 3,491 | Fire | ||
| Video 9 | outdoor_daytime_10m_heptane_CCD_001 | 4,548 | Fire | ||
| Video 10 | outdoor_daytime_20m_gasoline_CCD_001 | 3,924 | Fire | ||
| Video 11 | outdoor_daytime_20m_heptane_CCD_001 | 4,430 | Fire | ||
| Video 12 | outdoor_daytime_30m_gasoline_CCD_001 | 6,981 | Fire | ||
| Video 13 | outdoor_daytime_30m_heptane_CCD_001 | 3,754 | Fire | ||
| Video 14 | outdoor_night_10m_gasoline_CCD_001 | 1,208 | Fire | ||
| Video 15 | outdoor_night_10m_gasoline_CCD_002 | 1,298 | Fire | ||
| Video 16 | outdoor_night_10m_heptane_CCD_001 | 3,275 | Fire | ||
| Video 17 | outdoor_night_10m_heptane_CCD_002 | 776 | Fire | ||
| Video 18 | outdoor_night_20m_gasoline_CCD_001 | 5,055 | Fire | ||
| Video 19 | outdoor_night_20m_heptane_CCD_001 | 4,141 | Fire | ||
| Video 20 | outdoor_night_20m_heptane_CCD_002 | 1,645 | Fire | ||
| Video 21 | outdoor_night_30m_gasoline_CCD_001 | 6,977 | Fire | ||
| Video 22 | outdoor_night_30m_heptane_CCD_001 | 4,495 | Fire | ||
| Video 23 | smoke_or_flame_like_object_1 | 171 | Normal | 25,511 | |
| Video 24 | smoke_or_flame_like_object_2 | 530 | Normal | ||
| Video 25 | smoke_or_flame_like_object_3 | 862 | Normal | ||
| Video 26 | smoke_or_flame_like_object_4 | 904 | Normal | ||
| Video 27 | smoke_or_flame_like_object_5 | 8,229 | Normal | ||
| Video 28 | smoke_or_flame_like_object_6 | 7,317 | Normal | ||
| Video 29 | smoke_or_flame_like_object_7 | 2,012 | Normal | ||
| Video 30 | smoke_or_flame_like_object_8 | 8,49 | Normal | ||
| Video 31 | smoke_or_flame_like_object_9 | 2,807 | Normal | ||
| Video 32 | smoke_or_flame_like_object_10 | 1,830 | Normal | ||
| Total Frames | 89,560 | ||||
| Model | Fine Tuning | Accuracy (%) |
FPR (%) |
FNR (%) |
Training Time (s) | Prediction Time (s) | ||
|---|---|---|---|---|---|---|---|---|
| No | Yes | |||||||
| CNN Pre-Trained Models | AlexNet | ✓ | 78.31 | 41.18 | 14.29 | 78.9 | 1.19 | |
| ✓ | 86.04 | 13.58 | 7.14 | 114.3 | 1.63 | |||
| InceptionV3 | ✓ | 83.87 | 29.33 | 10.65 | 69.8 | 0.83 | ||
| ✓ | 87.56 | 7.22 | 2.13 | 93.4 | 0.94 | |||
| SqueezeNet | ✓ | 74.39 | 14.67 | 7.80 | 63.5 | 0.98 | ||
| ✓ | 84.77 | 9.41 | 5.50 | 87.4 | 1.23 | |||
| Fused | ✓ | 89.47 | 11.76 | 9.74 | 397.2 | 0.78 | ||
| ✓ | 90.35 | 5.88 | 1.50 | 247.9 | 0.63 | |||
| Proposed | Without IS | ✓ | 91.62 | 3.38 | 2.94 | 54.7 | 0.32 | |
| ✓ | 93.84 | 1.82 | 1.43 | 73.5 | 0.18 | |||
| With IS | ✓ | 92.40 | 0.65 | 0.84 | 84.3 | 0.12 | ||
| ✓ | 95.25 | 0.09 | 0.65 | 100.8 | 0.08 | |||
| Technique | FPR (%) | FNR (%) | Accuracy (%) |
|---|---|---|---|
| Rafiee [47] | 17.65 | 07.14 | 87.10 |
| Habiboğlu [48] | 5.88 | 14.29 | 90.32 |
| Chen [49] | 11.76 | 14.29 | 87.10 |
| Bellavista [46] | 9.07 | 02.13 | 94.39 |
| Foggia [50] | 11.76 | - | 93.55 |
| Muhammad [30] | 8.87 | 02.12 | 94.50 |
| Proposed | 0.09 | 00.65 | 95.25 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
