Preprint
Article

This version is not peer-reviewed.

Triplet Test on Rubble Stone Masonry: Numerical Assessment of the Shear Mechanical Parameters

A peer-reviewed article of this preprint also exists.

Submitted:

15 February 2020

Posted:

16 February 2020

You are already at the latest version

Abstract
Rubble stone masonry walls are widely diffused in most of the cultural and architectural heritage of historical cities. The mechanical response of such material is rather complicated to predict due to their composite nature. Vertical compression tests, diagonal compression tests, and shear-compression tests are usually adopted to experimentally investigate the mechanical properties of stone masonries. However, further tests are needed for the safety assessment of these ancient structures. Since the relation between normal and shear stresses plays a major role in the shear behavior of masonry joints, governing the failure mode, triplet test configuration was here investigated. First, the experimental tests carried out at the laboratory (LPMS) of the University of L'Aquila on stone masonry specimens were presented. Then, the triplet test was simulated by using the Total Strain Crack Model, which reflects all the ultimate states of quasi-brittle material such as cracking, crushing and shear failure. The goal of the numerical investigation was to evaluate the shear mechanical parameters of the masonry sample, including strength, dilatancy, normal and shear deformations. Furthermore, the effect of (i) confinement pressure and (ii) bond behavior at the sample-plates interfaces were investigated, showing that they can strongly influence the mechanical response of the walls.
Keywords: 
;  ;  ;  ;  ;  ;  ;  ;  ;  
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

Disclaimer

Terms of Use

Privacy Policy

Privacy Settings

© 2025 MDPI (Basel, Switzerland) unless otherwise stated