Preprint
Article

This version is not peer-reviewed.

A Fractional-Order Predator-Prey Model with Ratio-Dependent Functional Response and Linear Harvesting

A peer-reviewed article of this preprint also exists.

Submitted:

24 October 2019

Posted:

29 October 2019

You are already at the latest version

Abstract
We consider a model of predator-prey interaction at fractional-order where the predation obeys the ratio-dependent functional response and the prey is linearly harvested. For the proposed model, we show the existence, uniqueness, non-negativity as well as the boundedness of the solutions. Conditions for the existence of all possible equilibrium points and their stability criteria, both locally and globally, are also investigated. The local stability conditions are derived using the Magtinon's theorem, while the global stability is proven by formulating an appropriate Lyapunov function. The occurance of Hopf bifurcation around the interior point is also shown analytically. At the end, we implement the Predictor-Corrector scheme to perform some numerical simulations.
Keywords: 
;  ;  ;  ;  
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

Disclaimer

Terms of Use

Privacy Policy

Privacy Settings

© 2025 MDPI (Basel, Switzerland) unless otherwise stated