Hydrogen is a versatile energy carrier essential for decarbonizing hard-to-abate sectors and long-duration storage. This study presents a unified techno-economic comparison of major production pathways—grey/blue steam methane reforming, biomass gasification, thermochemical cycles, biological methods, and solar-powered electrolysis—using 2025 benchmarks. Focus is on a 100 kW off-grid PV-electrolyzer system with realistic assumptions (PV performance ratio 0.85, electrolyzer efficiency 70% LHV). In Iran's high-insolation regions (PSH ≥ 5.15 kWh/kWp/day), annual yields reach 3.2–3.4 tonnes H₂—55–60% higher than northern Europe—with round-trip efficiency of 23.8%. Solar electrolysis offers zero direct emissions and 51–55 kWh/kg H₂ consumption. Scaling to multi-MW coastal hybrids with renewable desalination projects LCOH of 3.0–4.0 USD/kg by 2030, positioning Iran as a competitive exporter. A reproducible model and phased roadmap provide actionable insights.