The implementation of FLASH Radiotherapy (FRT), characterized by ultra-high dose rates (UHDRs) frequently exceeding 106 Gy/s in microsecond pulses, imposes stringent requirements on real-time dosimetry. Conventional ionization chambers suffer severe ion recombination and space-charge limitations under these conditions. This review summarizes the state of SSD technologies—including conventional standard silicon diodes, advanced SiC diodes, LGADs, and pixel detectors—and compares their performance, linearity, and dynamic range in UHDR environments. Particular attention is devoted to operational modes (integrating vs. counting), saturation mechanisms, and readout electronics, which frequently dominate detector behavior at FLASH conditions. We discuss experimental results from recent UHDR beamlines and highlight emerging concepts that will shape future clinical translation.