Digital product passports outline information about a product’s lifecycle, circularity, and sustainability related data. Sustainability data contains claims about carbon footprint, recycled material composition, ethical sourcing of production materials, etc. Also, upcoming regulatory directives require companies to disclose this type of information. However, current sustainability reporting practices face challenges, such as greenwashing, where companies make incorrect claims that are difficult to verify. There is also a challenge of disclosing sensitive production information when other stakeholders, such as consumers or other economic operators, wish to independently verify sustainability claims. Zero-knowledge proofs (ZKPs) provide a cryptographic system for verifying statements without revealing sensitive information. The goal of this research paper is to explore ZKP cryptography, trust models, and implementation concepts for extending DPP capability in privacy-aware reporting and verification of sustainability claims in products. To achieve this goal, first, formal representations of sustainability claims are provided. Then, a data matrix and trust model for the proof generation are developed. An interaction sequence is provided to show different components for various proof generation and verification scenarios for sustainability claims. Lastly, the paper provides a circuit template for the proof generation of an example claim and a credential structure for their input data validation.