This study proposes an integrated agility assessment system that combines Millimeter-Wave (MMW) radar, Ultra-Wideband (UWB) ranging, and Mixed Reality (MR) technologies to quantitatively evaluate athlete performance with high accuracy. The system utilizes the fine motion-tracking capability of MMW radar and the immersive real-time visualization provided by MR to ensure reliable operation under low-light conditions and multi-object occlusion, thereby enabling precise measurement of mobility, reaction time, and movement distance.To address the challenge of player identification during doubles testing, a one-to-one UWB configuration was adopted, in which each base station was paired with a wearable tag to distinguish individual athletes. UWB identification was not required during single-player tests. The experimental protocol included three specialized agility assessments—Table Tennis Agility Test I (TTAT I), Table Tennis Doubles Agility Test II (TTAT II), and the Agility T-Test (ATT)—conducted with more than 80 table tennis players of different technical levels (80% male and 20% female). Each athlete completed two sets of two trials to ensure measurement consistency and data stability.Experimental results demonstrated that the proposed system effectively captured displacement trajectories, movement speed, and reaction time. The MMW radar achieved an average measurement error of less than 10%, and the overall classification model attained an accuracy of 91%, confirming the reliability and robustness of the integrated sensing pipeline. Beyond local storage and MR-based live visualization, the system also supports cloud-based data uploading for graphical analysis and enables MR content to be mirrored on connected computer displays. This feature allows coaches to monitor performance in real time and provide immediate feedback.By integrating the environmental adaptability of MMW radar, the real-time visualization capability of MR, UWB-assisted athlete identification, and cloud-based data management, the proposed system demonstrates strong potential for professional sports training, technical diagnostics, and tactical optimization. It delivers timely and accurate performance metrics and contributes to the advancement of data-driven sports science applications.