Preprint
Article

This version is not peer-reviewed.

A Novel Grouped-Gram-Based Algorithm for Fast and Memory-Efficient Fixed Effects Estimation

Submitted:

07 December 2025

Posted:

09 December 2025

You are already at the latest version

Abstract
Fixed effects models often rely on the within transformation, which constructs demeaned arrays prior to forming cross-products. This paper develops an estimator that avoids the for- mation of demeaned arrays by exploiting grouped summaries built from per-unit sufficient statistics. A complete derivation shows that the grouped Gram representation reproduces the classical estimator exactly. The difference lies in memory access patterns and byte movement. The grouped estimator concentrates operations into unit-level accumulations, avoiding the writes associated with array centering. Gains arise once the panel reaches a scale where mem- ory traffic governs run time. Simulations examine coefficient accuracy, bootstrap dispersion, run time, and memory use.
Keywords: 
;  ;  ;  ;  ;  ;  
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

Disclaimer

Terms of Use

Privacy Policy

Privacy Settings

© 2025 MDPI (Basel, Switzerland) unless otherwise stated