Submitted:
09 December 2025
Posted:
11 December 2025
You are already at the latest version
Abstract
Keywords:
MSC: 90C29; 90C50; 90C90
1. Introduction
2. Finding the Possibly Efficient Set of IMOLP Problem (1)-(3)
2.1. A General Case
2.2. A Special Case
3. Conclusions
References
- Allahdadi, M.; Batamiz, A. Generation of some methods for solving interval multi-objective linear programming models. OPSEARCH 2021, 58, 1077–1115. [Google Scholar] [CrossRef]
- Armand, P. Finding all maximal efficient faces in multiobjective linear programming. Math. Program. 1993, 61, 357–375. [Google Scholar] [CrossRef]
- Armand, P.; Malivert, C. Determination of the efficient set in multiobjective linear programming. J. Optim. Theory and Appl. 1991, 70, 467–489. [Google Scholar] [CrossRef]
- Batamiz, A.; Allahdadi, M. Finding efficient solutions in the interval multi-objective linear programming models. Yugosl. J. Oper. Res. 2021, 31, 95–119. [Google Scholar] [CrossRef]
- Benson, H.P. Hybrid approach for solving multi-objective linear programs in outcome space. J. Optim. Theory Appl. 1998, 98, 17–35. [Google Scholar] [CrossRef]
- Chanas, S.; Kuchta, D. Multiobjective programming in optimization of interval objective functions – A gereralized approach. European J. Oper. Res. 1996, 94, 594–598. [Google Scholar] [CrossRef]
- Dauer, J.P.; Gallagher, R.J. A combined constraint-space, objective-space approach for determining high-dimensional maximal efficient faces of multiple objective linear programs. European J. Oper. Res. 1996, 88, 368–381. [Google Scholar] [CrossRef]
- Dauer, J.P.; Liu, Y.H. Solving multiple objective linear programs in objective space. European J. Oper.Res 1990, 46, 350–357. [Google Scholar] [CrossRef]
- Ecker, J.G.; Hegner, N.S.; Kouada, I.A. Generating all maximal efficient faces for multiple objective linear Programs. J. Optim. Theory and Appl. 1980, 30, 353–381. [Google Scholar] [CrossRef]
- Fiedler, M.; Nedoma, J.; Ramík, J.; Rohn, J.; Zimmermann, K. Linear optimization problems with inexact data; Springer: New York, 2006. [Google Scholar]
- Foroughi, A.A.; Jafari, Y. A modified method for constructing efficient solutions structure of molp. Appl. Math. Model. 2009, 3, 2403–2410. [Google Scholar] [CrossRef]
- Garajova, E.; Hladik, M. On the optimal solution set in interval linear programming. Comput. Optim. Appl. 2019, 72, 269–292. [Google Scholar] [CrossRef]
- Hajiagha, S.H.R.; Mahdiraji, H.A.; Hashemi, S.S. Multi-objective linear programming with interval coefficients: A fuzzy set based approach. Kybernetes 2013, 42, 482–496. [Google Scholar] [CrossRef]
- Hansen, E. On linear algebraic equations with interval coefficients. In Topics in Internal Analysis; Hansen, E., Ed.; Oxford U.P. Oxford, 1969. [Google Scholar]
- Hladik, M.; Publishers, A.S.N.S.; York, N. 2012.
- Inuiguchi, M.; Kume, Y. A discrimination method of possibly efficient extreme points for interval multiobjective linear programming. Transactions of the Society of Instrument Control Engineers 1989, 25, 823–825. [Google Scholar] [CrossRef]
- Inuiguchi, M.; Kume, Y. Goal programming problems with interval coefficients and target intervals. European J. Oper. Res. 1991, 52, 345–360. [Google Scholar] [CrossRef]
- Isermann, H. The enumeration of the set of all efficient solutions for a linear multiple objective program. Oper. Res. Q. 1977, 28, 711–725. [Google Scholar] [CrossRef]
- Ishibuchi, H.; Tanaka, H. Multiobjective programming in optimization of the interval objective function. European J. Oper. Res. 1990, 48, 219–225. [Google Scholar] [CrossRef]
- Krichen, S.; Masri, H.; Guitouni, A. Adjacency based method for generating maximal efficient faces in molp. Appl. Math. Model. 2012, 36, 6301–6311. [Google Scholar] [CrossRef]
- Li, H.; Luo, J.; Wang, Q. Solvability and feasibility of interval linear equations and inequalities. Linear Algebra and its Appl. 2014, 463, 78–94. [Google Scholar] [CrossRef]
- Oettli, W.; Prager, W. Compatibility of approximate solution of linear equations with given error bounds for coefficients and right-hand sides. Numerische Mathematik 1964, 6, 405–409. [Google Scholar] [CrossRef]
- Oliveira, C.; Antunes, C.H. Multiple objective linear programming models with interval coefficients– an illustrative overview. European J. Oper. Res. 2007, 181, 1434–1463. [Google Scholar] [CrossRef]
- Pourkarimi, L.; Yaghoobi, M.A.; Mashinchi, M. Determining maximal efficient faces in multiobjective linear programming problem. J. Math. Anal. Appl. 2009, 354, 234–248. [Google Scholar] [CrossRef]
- Rivaza, S.; Saeidib, Z. Solving Multiobjective Linear Programming Problems with Interval Parameters. Fuzzy Information and Engineering 2021, 13, 497–504. [Google Scholar] [CrossRef]
- Rivaz, S.; Yaghoobi, M.A. Weighted sum of maximum regrets in an interval MOLP problem. Int Trans Oper Res. 2018, 25, 1659–1676. [Google Scholar] [CrossRef]
- Rohn, J. Solvability of systems of linear interval equations. SIAM J. Matrix Anal. Appl. 2003, 25, 237–245. [Google Scholar] [CrossRef]
- Rohn, J. Systems of linear interval equations. Linear Algebra Appl. 1989, 126, 39–78. [Google Scholar] [CrossRef]
- Rohn, J. Solvability of systems of interval linear equations and inequalities. In Linear Optimization Problems with Inexact Data; Fiedler, M., Ne-doma, J., Ramík, J., Rohn, J., Zimmermann, K., Eds.; Springer: New York, 2006; pp. 35–77, (Chapter 2). [Google Scholar]
- Rudloff, B.; Ulus, F.; Vanderbei, R.J. A parametric simplex algorithm to solve linear vector optimizationproblems. Math. Programming 2017, 163, 213–242. [Google Scholar] [CrossRef]
- Sayin, S. An algorithm based on facial decomposition for finding the efficient set in multiple objective linear Programming. Oper. Res. Lett. 1996, 19, 87–94. [Google Scholar] [CrossRef]
- Tohidi, G.; Hassasi, H. An adjacency based local top-down search method for finding maximal efficient faces in multiple objective linear programming. Naval Res. Logist. 2018, 65, 203–217. [Google Scholar] [CrossRef]
- Tu, T.V. Optimization over the efficient set of a parametric multiple objective linear programming Problem. European J. Oper. Res. 2000, 122, 570–583. [Google Scholar] [CrossRef]
- Tu, T.V. A common formula to compute the efficient sets of a class of multiple objective linear programming problems. Optimization 2015, 64, 2065–2092. [Google Scholar] [CrossRef]
- Tu, T.V. The maximal descriptor index set for a face of a convex polyhedral set and some applications. J. Math. Anal. Appl. 2015, 429, 395–414. [Google Scholar] [CrossRef]
- Tu, T.V. A new method for determining all maximal efficient faces in multiple objective linear programming. Acta Math. Vietnam 2017, 42, 1–25. [Google Scholar]
- Tu, T.V. A combined top-down and bottom-up search method for determining all maximal efficient faces in multiple objective linear programming. 2023. [Google Scholar] [CrossRef]
- Tu, T.V. A method to find all efficient solutions of an interval multiple objective linear programming problem. Submitted.
- Tu, T.V. A method to find all strongly efficient solutions of an interval multiple objective linear programming problem. Submitted.
- Yan, H.; Wei, Q.; Wang, J. Constructing efficient solutions structure of multiobjective linear programming. J. Math. Anal. Appl. 2005, 307, 504–523. [Google Scholar] [CrossRef]
- Yu, P.L.; Zeleny, M. The set of all nondominated solutions in linear cases and a multicriteria simplex method. J. Math. Anal. Appl. 1975, 49, 430–468. [Google Scholar] [CrossRef]
- Urli, B.; Nadeau, R. An interactive method to multiobjective linear programming problems with interval coefficients. INFOR 1992, 30, 127–137. [Google Scholar] [CrossRef]
- Wang, M.L.; Wang, H.F. Interval analysis of a fuzzy multiobjective linear programming. Int. J. Fuzzy Syst. 2001, 34, 558–568. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
